
Efficiently Answering
Quantile Queries

Nofar Carmeli

Based on: PODS 21, TODS special issue?, PODS 22

Joint work with: Karl Bringmann, Wolfgang Gatterbauer,
Benny Kimelfeld, Stefan Mengel, Mirek Riedewald, Nikolaos Tziavelis

Factorized Databases Workshop, August 2022

Content

• Task

• Dichotomy for ideal time complexity:
• Hardness

• Algorithm

• Solutions for hard cases:
• Functional dependencies

• Selection problem

• Extended preprocessing

• Concluding remarks

2

Talk focus:
Join queries, lex orders

Example

• What is the median monthly cost of an employee?

3

• Solution 1:
join, sort, access the middle

• Solution 2:
count, ranked enumeration until the middle

• Solution 3:
count, ranked access to the middle

Name Role Address Period Salary Cost

Jack Junior dev Boston 11/2020 4000 50

Jill Senior dev Brookline 11/2020 4500 100

Joanna Senior dev Braintree 11/2020 4500 200

Jack Junior dev Boston 12/2020 7000 50

Jill Senior dev Brookline 12/2020 7100 100

Joanna Senior dev Braintree 12/2020 7100 200

Join Results

3rd

Count = 6

Name Role Address

Jack Junior dev Boston

Jill Senior dev Brookline

Joanna Senior dev Braintree

Employees

Period Role Salary

11/2020 Junior dev 4000

11/2020 Senior dev 4500

12/2020 Junior dev 7000

12/2020 Senior dev 7100

Remuneration

Address Cost

Boston 50

Brookline 100

Braintree 200

Travel

Goal: efficient ranked access

4

Problem: query + order

Input: database instance

factorized database

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

Connection to other problems

ranked direct access

direct access

ranked enumeration

sampling without repetitions

enumeration

5

Content

• Task

• Dichotomy for ideal time complexity:
• Hardness

• Algorithm

• Solutions for hard cases:
• Functional dependencies

• Selection problem

• Extended preprocessing

• Concluding remarks

6

Talk focus:
Join queries, lex orders

What is the best achievable performance?

• Can we always achieve that?

7

Ideal time guarantees:
Preprocessing: linear (to read the input)
Access: constant

Allow log factors, data complexity

Background: enumeration dichotomy

8

Natural join queries

Yes

No,
assuming hardness of
hyperclique detection

Can the query be solved with linear preprocessing and constant delay?

No linear preprocessing constant access for cyclic joins

acyclic

[Brault-Baron 2013][Yannakakis 1981]

Acyclicity
• A query that has a join tree is called acyclic

9

Query: 𝑄1 𝑥, 𝑦, 𝑧, 𝑤 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇 𝑧, 𝑤 , 𝑈(𝑤)

Join Tree:

1. a node for every atom

2. tree
3. For every variable:

the nodes containing it form a subtree

Query: 𝑄2 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑥, 𝑧)
𝑦, 𝑧

𝑥, 𝑦

x, z

𝑦, 𝑧

𝑥, 𝑦
𝑧, 𝑤

𝑤

What is the best achievable performance?

• Can we always achieve that?
No (never for cyclic joins)

• Can we always achieve that if the query is acyclic?

10

Ideal time guarantees:
Preprocessing: linear (to read the input)
Access: constant

Allow log factors, data complexity

Yes

No,
assuming hardness of
hyperclique detection

acyclic

Background: enumeration dichotomy

11

Self-join free conjunctive queries

Can the query be solved with linear preprocessing and constant delay?

free-connex

No,
assuming hardness of Boolean matrix multiplication

Example for non-free-connex CQ: 𝑄1 𝑣1, 𝑣2 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

[Brault-Baron 13][Bagan, Durand, Grandjean; CSL 07]

Enumeration with Projections via Ranked Access

• Reduction:

Log number of direct-access calls between answers

12

𝑄2 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

𝑄1 𝑣1, 𝑣2 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒂𝟏 𝒃𝟏 𝒄𝟏

𝒂𝟏 𝒃𝟏 𝒄𝟐

𝒂𝟏 𝒃𝟏 𝒄𝟑

𝒂𝟏 𝒃𝟏 𝒄𝟒

𝒂𝟏 𝒃𝟏 𝒄𝟓

𝒂𝟏 𝒃𝟐 𝒄𝟏

𝒂𝟏 𝒃𝟐 𝒄𝟐

𝒂𝟐 𝒃𝟏 𝒄𝟏

Enumerate

Lexicographic access

using
binary search

for next

different 𝒗𝟏,

𝒗𝟐 values

⇒
𝑄1 has no enumeration

with polylog delay
𝑄2 has no lexicographic access

with polylog access time

What is the best achievable performance?

• Can we always achieve that?
No (never for cyclic joins)

• Can we always achieve that if the query is acyclic?
No

13

Ideal time guarantees:
Preprocessing: linear (to read the input)
Access: constant

Allow log factors, data complexity

Hardness Result

• Can be extended whenever there is a disruptive trio

• Example: 𝑄1(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

14

Def: disruptive trio

𝑣3

𝑣1 𝑣2x

last out of the three

share an atom

What is the best achievable performance?

• Can we always achieve that?
No (never for cyclic joins)

• Can we always achieve that if the query is acyclic?
No (never if there is a disruptive trio)

• Can we always achieve that if the query is acyclic and without disruptive trios?

15

Ideal time guarantees:
Preprocessing: linear (to read the input)
Access: constant

Allow log factors, data complexity

Algorithm

16

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

6 = 1 ⋅ 4 + 2

Access 1

Access 2

Access 6

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

Σ𝑤=4

𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Algorithm

17

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Access 1

Access 2

Access 6

𝒗𝟏 𝒗𝟑 𝒗𝟐 𝒗𝟒

a1 c1 b1 d1

a1 c1 b1 d2

a1 c1 b1 d3

a1 c1 b2 d4

a1 c2 b1 d1

a1 c2 b1 d2

a1 c2 b1 d3

a1 c2 b2 d4

…

Resulting order:

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Algorithm

18

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Orders the algorithm can achieve:
DFS of a join tree

• Preprocessing:
• DP up the tree
• computes how many answers in a subtree use each tuple

• Access:
• recurse down the tree
• splits the desired index between the children

[C, Zeevi, Berkholz, Kimelfeld, Schweikardt; PODS 20]

Example

• No disruptive trio

• Not a DFS of a join tree

• Can it be solved with ideal guarantees?

• Yes!

19

𝑄2 𝑣1, 𝑣2, 𝑣3, 𝑣4 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣2, 𝑣4)

Algorithm

20

𝒗𝟐 𝒗𝟒

b1 d1

b1 d2

b1 d3

b2 d4

𝒗𝟐

b1

b2

w

1

1

1

1

w

3

1
𝒗𝟏 𝒗𝟑

a1 c1

a1 c2

a2 c2

𝒗𝟏

a1

a2

w

8

4

w

1

1

1

Factor 2 to the weights

Access 6

Access 6

• Preprocessing:
• DP up the tree

• computes how many answers in a subtree use each tuple

• Access [PODS 20]:
• recurse down the tree

• splits the desired index between the children

• Modified Access [PODS 21]:
• Move children on the fly

Σ𝑤=2

--6

--2

Orders the algorithm can achieve:
Orders matching a layered join tree

Layered Trees
• Layered tree for a CQ and a variable ordering:

• Join-tree for an inclusive extension

• Layer 𝑖 = one node with last variable 𝑣𝑖
• The induced graph by the first k layers is a tree, for all k

21

𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1 𝑣1, 𝑣3 𝑣2, 𝑣4𝑣2𝑣1

𝑄2 𝑣1, 𝑣2, 𝑣3, 𝑣4 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣2, 𝑣4)

∃ Layered join tree ⇔ ¬∃ disruptive trio

What is the best achievable performance?

• Can we always achieve that?
No (never for cyclic joins)

• Can we always achieve that if the query is acyclic?
No (never if there is a disruptive trio)

• Can we always achieve that if the query is acyclic and without disruptive trios?
Yes!

22

Ideal time guarantees:
Preprocessing: linear (to read the input)
Access: constant

Allow log factors, data complexity

Dichotomy Result

23

Given: join query 𝑄, ordering 𝐿 of free(𝑄),

lexicographic access in <𝑛, log 𝑛>

⇕*
acyclic, no disruptive trio

* Lower bounds assume:
(1) no self-joins
(2) hardness of matrix multiplication and hyperclique detection

Disruptive Trio

𝑣3

𝑣1 𝑣2x

last out of the three

share an atom

[C, Tziavelis , Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Content

• Task

• Dichotomy for ideal time complexity:
• Hardness

• Algorithm

• Solutions for hard cases:
• Functional dependencies

• Selection problem

• Extended preprocessing

• Concluding remarks

24

Talk focus:
Join queries, lex orders

What do we do in the hard cases?

25

• Can we use dependencies in the schema?

Unary Functional Dependencies

• Sometimes there are equivalent tractable (query, order) pairs

• Generic reduction [Carmeli, Kröll; ICDT 18]:
𝑄1 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆 𝑣3, 𝑣2 𝑆: 𝑣3 → 𝑣2

⇓ linear construction
𝑄1
′ 𝑣1, 𝑣2, 𝑣3 ← 𝑅′ 𝑣1, 𝑣3, 𝑣2 , 𝑆 𝑣3, 𝑣2

• Task-specific reduction:
𝑄1 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆 𝑣3, 𝑣2 𝑅: 𝑣1 → 𝑣3

⇓
𝑄1
′′ 𝑣1, 𝑣3, 𝑣2 ← 𝑅 𝑣1, 𝑣3 , 𝑆 𝑣3, 𝑣2

• Dichotomy result: consider an FD-reordered extension

26

What do we do in the hard cases?

27

• Can we use dependencies in the schema?
Yes, in some cases.

• Can we do it with linear access time?

Direct Access Problem

28

Problem: query + order

Input: database instance

factorized database

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

Selection Problem

29

Problem: query + order

Input: database instance

factorized database

index

The 57th answer
is (𝑐1, 𝑐2, 𝑐3)

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑧 , 𝑆(𝑧, 𝑦)

Lexicographic 𝑥 > 𝑦 > 𝑧

57

answer

(supports a single access call)

Selection

• Support single access (instead of multiple calls)

• Allow linear time for an access call

• Additional queries become tractable.
Example: 𝑄1 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆 𝑣3, 𝑣2

• Every acyclic join and lex order have linear time selection!

• Linear time access ⇔ acyclic query (regardless of lex order)

30

What do we do in the hard cases?

31

• Can we use dependencies in the schema?
Yes, in some cases.

• Can we do it with linear access time?
Yes, for all acyclic joins (regardless of the lex order).

• How much do we need to pay in preprocessing to get log access time?

Extended Preprocessing: Algorithm

• Join problematic relations at preprocessing

• What to join?
Disruption-free decomposition:
For variables in reverse order: bag with variable and smaller neighbors

Examples:

• 𝑄1 𝑣1, 𝑣2, 𝑣3 ← 𝑅1 𝑣1, 𝑣3 , 𝑅2 𝑣3, 𝑣2
Disruptive trios: 𝑣1, 𝑣3, 𝑣2

32

𝑣1
𝑣3

𝑣2
𝑣1, 𝑣2, 𝑣3

query hypergraph decomposition

Extended Preprocessing: Algorithm
Examples:

• 𝑄1 𝑣1, 𝑣2, 𝑣3 ← 𝑅1 𝑣1, 𝑣3 , 𝑅2 𝑣3, 𝑣2
Disruptive trios: 𝑣1, 𝑣3, 𝑣2

• 𝑄1 𝑣1, 𝑣2, 𝑣3, 𝑣4 ← 𝑅1 𝑣1, 𝑣4 , 𝑅2 𝑣4, 𝑣2 , 𝑅3 𝑣4, 𝑣3
Disruptive trios: 𝑣1, 𝑣4, 𝑣3 , 𝑣1, 𝑣4, 𝑣2 , 𝑣2, 𝑣4, 𝑣3

• 𝑄1 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 ← 𝑅1 𝑣1, 𝑣5 , 𝑅2 𝑣5, 𝑣3 , 𝑅3 𝑣3, 𝑣4 , 𝑅4 𝑣4, 𝑣2
Disruptive trios: 𝑣1, 𝑣5, 𝑣3 , 𝑣3, 𝑣4, 𝑣2

33

𝑣1
𝑣3

𝑣2

𝑣5 𝑣4

𝑣1, 𝑣3, 𝑣5

𝑣1, 𝑣2, 𝑣3

𝑣2, 𝑣3, 𝑣4

𝑣1
𝑣3

𝑣2

𝑣1, 𝑣2, 𝑣3

𝑣1
𝑣4

𝑣2

𝑣3 𝑣1, 𝑣2, 𝑣3, 𝑣4

Disruption-free decomposition:
For variables in reverse order: bag with variable and smaller neighbors

Extended Preprocessing: Hardness
• Cost: 𝑛𝜄

𝜄 = incompatibility number = largest fractional edge cover of a bag

• Can we do better?
• No better decomposition exists
• Other techniques? probably not (due to conditional lower bound)

• Reductions:
access to query ⇒ access to star query ⇒ testing for projected star

⇒ online set-disjointness ⇒ Zero-clique

• Zero-clique conjecture:
∀𝑘, 𝜀: no randomized algorithm to detect a 𝑘-clique with 0 weight in a
weighted graph in 𝑂(𝑛𝑘−𝜀)

34

star query:
𝑣1

𝑣2

𝑣3

𝑣4𝑣𝑘

𝑣𝑘+1

…

𝜄 = fractional edge cover of a bag
= fractional independent set of the same bag

Preprocessing Result

35

[Bringmann, C, Mengel; PODS 22]

* Lower bounds assume:
(1) no self-joins
(2) hardness of zero-clique detection

Given: join query 𝑄, ordering 𝐿 of free(𝑄),

lexicographic access in <𝑛𝑘 , log 𝑛>

⇕*
𝜄 𝑄, 𝐿 ≤ 𝑘

Content

• Task

• Dichotomy for ideal time complexity:
• Hardness

• Algorithm

• Solutions for hard cases:
• Functional dependencies

• Selection problem

• Extended preprocessing

• Concluding remarks

36

Talk focus:
Join queries, lex orders

Connections to known notions

• Elimination order
• No disruptive trio ⇔ reverse elimination order [Brault-Baron 13]

• d-trees
• Translation d-tree to tree decompositions [Olteanu, Závodný; TODS 15]

gives a layered join tree of an order matching the tree

• The access algorithm can be applied directly on d-trees

37

Conclusion

• More in our papers:
• Joins with projection

• Partial lexicographic orders

• Sum of weights order

• Future work:
• Preprocessing needed for the above extensions

• More expressive query classes

• Preprocessing-access tradeoff

38

Extra Slides

39

Introduction

40

Related work

• Enumeration [BaganDurandGrandjean CSL’07] [Brault-Baron thesis 2013]

const (or log) delay possible ⟺* free-connex

• Ranked enumeration [TziavelisAjwaniGatterbauerRiedewaldYang PVLDB’20]

sum of weights (or lexicographic), log delay, free-connex

• Direct access (underlying restricted order support)
• via elimination order [Brault-Baron thesis 2013]

• via join tree [CZeeviBerkholzKimelfeldSchweikardt PODS’20]

• via q-tree (dynamic settings, q-hierarchical only) [Keppeler thesis 2020]

41All using: data complexity, RAM model

Definitions

1. a node for every atom 2. tree 3. for every variable X:
the nodes containing X form a subtree

42

4. a subtree with exactly the free variables

possibly also subsets

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧 , 𝑅3(𝑧, 𝑤)
𝑧, 𝑤

𝑥, 𝑦

𝑦, 𝑧

An acyclic CQ has a graph with:

A free-connex CQ also requires:

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧, 𝑤 , 𝑅3(𝑤, 𝑣)
𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

𝑦, 𝑧 𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

Free-Connex CQs

Can be reduced to full acyclic
1. Find a join tree

2. Remove dangling tuples
[Yannakakis81]

3. Ignore existential variables

Then, joined efficiently

43

x y

a1 b1

a1 b2

a2 b2

y z

b1 e1

b2 e2

b3 e3

w v

c2 d1

c2 d2

c3 d2

inside
out

𝑄 𝑥, 𝑦, 𝑧 ← 𝑅1 𝑥, 𝑦 , 𝑅2 𝑦, 𝑧, 𝑤 , 𝑅3(𝑤, 𝑣)

y z w

b1 e1 c1

b2 e2 c2

b3 e3 c3

𝑦, 𝑧, 𝑤

𝑥, 𝑦

𝑤, 𝑣

𝑦, 𝑧

Lexicographic Orders

44

Hardness Result
• Can be extended whenever there is a disruptive trio

Example: 𝑄1(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

• Proof idea:
Using binary search: truncate the lex order to make 𝑣3 existential and 𝑣1, 𝑣2 free
Known for acyclic CQs: not free-connex ⇔ exists free-path

(chordless path, endpoints free, middle existential)
The obtained CQ has a free-path 𝑣1 − 𝑣3 − 𝑣2

45

Def: disruptive trio

𝑣3

𝑣1 𝑣2x

last out of the three

share an atom

Dichotomy

46

Given: CQ 𝑄, ordering 𝐿 of free(𝑄),

lexicographic access in <𝑛 polylog 𝑛 , polylog 𝑛>

⇕*
free-connex, no disruptive trio

* Lower bounds assume:
(1) no self-joins
(2) hardness of matrix multiplication and hyperclique detection

Disruptive Trio

𝑄1(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣2 , 𝑆(𝑣2, 𝑣3)✓
✘𝑄2(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

𝑣3

𝑣1 𝑣2x

last out of the three

share an atom

Partial Lexicographical Ordering

47

Given: CQ 𝑄, ordering 𝐿 of free(𝑄),

lexicographic access in <𝑛 polylog 𝑛 , polylog 𝑛>

⇕*
free-connex, no disruptive trio

* Lower bounds assume:
(1) no self-joins
(2) hardness of matrix multiplication and hyperclique detection

• possible ⇔ a completion for a feasible full ordering

a subset of

partial

L-connex,

L-connex

𝑥, 𝑦

𝑣1, 𝑣2

𝑣2, 𝑥

free

L

𝑄1 𝑣1, 𝑣2, 𝑥 ← 𝑅 𝑣1, 𝑣2 , 𝑆 𝑣2, 𝑥 , 𝑇(𝑥, 𝑦)✓
✘𝑄2(𝑣1, 𝑣2, 𝑥) ← 𝑅 𝑣1, 𝑥 , 𝑆(𝑥, 𝑣2)

Sum of Weights

48

Dichotomy

49

Given: CQ 𝑄,

sum-of-weights access in <𝑛 polylog 𝑛 , polylog 𝑛>

⇕*
acyclic, an atom contains all free variables

* Lower bounds assume:
(1) no self-joins
(2) hardness of 3-SUM and hyperclique detection

𝑄1(𝑥, 𝑧) ← 𝑅 𝑥, 𝑦, 𝑧 , 𝑆(𝑦, 𝑧) ✓

𝑄2(𝑥, 𝑧) ← 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧) ✘

Hardness
• Observation: Binary search finds a weight with logarithmic accesses

• Use two independent free variables

𝑄2(𝑥, 𝑧) ← 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)

3SUM hypothesis
given 3 sets of integers 𝐴 = 𝐵 = 𝐶 = 𝑛,

deciding ∃ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 s.t. 𝑎 + 𝑏 + 𝑐 = 0
cannot be done in time 𝑂 𝑛2−𝜀 for any 𝜀 > 0

𝒙 𝑦 𝑧 𝒘

𝑎1 0 𝑏1 𝑎1 + 𝑏1

𝑎1 0 𝑏2 𝑎1 + 𝑏2

𝑎2 0 𝑏1 𝑎2 + 𝑏1

𝑎2 0 𝑏2 𝑎2 + 𝑏2

𝒙 𝒚

𝑎1 0

𝑎2 0

𝒚 𝒛

0 𝑏1

0 𝑏2

Direct access
impossible in
<𝑛2−𝜀 , 𝑛1−𝜀>

Binary

search

for −𝑐 (∀𝑐)

𝐴 𝐵
50

Direct-Access Overview

51

AcyclicCQs

Free ⊆
atom

L-connex
and no

disruptive
trio

Not L-connex
or

disruptive
trio

Free-connex

Both intractable

LEX tractable,
SUM intractable

Both tractable

* Lower bounds assume:
(1) no self-joins
(2) hardness of 3-SUM, Boolean matrix multiplication, and hyperclique detection

Selection

52

Direct-Access Overview

53

AcyclicCQs

Free ⊆
atom

L-connex
and no

disruptive
trio

Not L-connex
or

disruptive
trio

Free-connex

Both intractable

LEX tractable,
SUM intractable

Example:
𝑄(𝑣1, 𝑣2, 𝑣3) ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

Direct access
Selection

(for both order types)

Both tractable

* Lower bounds assume:
(1) no self-joins
(2) hardness of 3-SUM, Boolean matrix multiplication, and hyperclique detection

✓
✘

Selection Dichotomy

54

Given: full CQ 𝑄,

sum-of-weights selection in O(𝑛𝑙𝑜𝑔𝑛)
⇕*

At most two maximal atoms

* Lower bounds assume:
(1) no self-joins
(2) hardness of 3-SUM and hyperclique detection

𝑄1 𝑥, 𝑦, 𝑧 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑦) ✓

✘𝑄2 𝑥, 𝑦, 𝑧, 𝑢 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑧, 𝑢)

w.r.t. hyperedge containment

Selection
• Sometimes: efficient selection, no efficient direct access

55

𝑄2 𝑣1, 𝑣2, 𝑣3 ← 𝑅 𝑣1, 𝑣3 , 𝑆(𝑣3, 𝑣2)

Selection on a union of sorted matrices
of dimensions 𝑚𝑖 × 𝑛𝑖

possible in time O(σmax(𝑚𝑖 , 𝑛𝑖))

[Frederickson Johnson 1984]

𝒗𝟏 𝒗𝟑 𝒘

a d 101

b d 201

a e 102

c e 302

𝒗𝟑 𝒗𝟐 𝒘

d f 10

e f 10

e g 20𝑣3 = e

f g

a 112 122

c 312 322

𝑣1
𝑣2

𝑣3 = d

f

a 111

b 211

𝑣1
𝑣2

* We do not materialize the matrices

Hardness
• Assumption: 𝑄1 cannot be decided in quasilinear time

• Reduction:
• Use the same relations
• Need to identify answers to 𝑄2 with 𝑥 = 𝑤
• Can identify answers with weight 0 (binary search)

• Log number of selection calls
• 𝑄1 selection with quasilinear time, contradiction

56

𝑄2 𝑥, 𝑦, 𝑧, 𝑤 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑧, 𝑤)

𝑄1 ← 𝑅 𝑥, 𝑦 , 𝑆 𝑦, 𝑧 , 𝑇(𝑧, 𝑥)
Decide

Sum-of-weights selection

using

𝒙 𝒚

a b

k l

𝒚 𝒛

b c

l m

𝒛 𝒘

c a

m n

𝒙 weights

a: 1

k: 2

𝒚 weights

b: 0

l: 0

𝒛 weights

c: 0

m: 0

𝒘 weights

a: -1

n: -3

𝒙 𝒚 𝒛 𝒘

a b c a

k l m n

weight

0

-1

𝑄2 answers:

Extended Preprocessing

57

Preprocessing Result

58

Given: join query 𝑄, ordering 𝐿 of free(𝑄),

1. lexicographic access in <𝑛𝜄(𝑄,𝐿), log 𝑛>

2. ∀𝜀, no lex access in <𝑛𝜄 𝑄,𝐿 −𝜀, polylog 𝑛>,
assuming hardness of zero-clique detection

[Bringmann, C, Mengel; PODS 22]

