# Efficiently Answering Quantile Queries

#### Nofar Carmeli

Based on: PODS 21, TODS special issue?, PODS 22

Joint work with: Karl Bringmann, Wolfgang Gatterbauer, Benny Kimelfeld, Stefan Mengel, Mirek Riedewald, Nikolaos Tziavelis

Factorized Databases Workshop, August 2022

## Content

#### Task

- Dichotomy for ideal time complexity:
  - Hardness
  - Algorithm
- Solutions for hard cases:
  - Functional dependencies
  - Selection problem
  - Extended preprocessing
- Concluding remarks

Talk focus: Join queries, lex orders

## Example

| Employees |            |           | Remuneration |            |        | Travel    |      |
|-----------|------------|-----------|--------------|------------|--------|-----------|------|
| Name      | Role       | Address   | Period       | Role       | Salary | Address   | Cost |
| Jack      | Junior dev | Boston    | 11/2020      | Junior dev | 4000   | Boston    | 50   |
| Jill      | Senior dev | Brookline | 11/2020      | Senior dev | 4500   | Brookline | 100  |
| Joanna    | Senior dev | Braintree | 12/2020      | Junior dev | 7000   | Braintree | 200  |
|           |            |           | 12/2020      | Senior dev | 7100   | L         |      |

- What is the median monthly cost of an employee?
  - Solution 1:

join, sort, access the middle

• Solution 2:

count, ranked enumeration until the middle

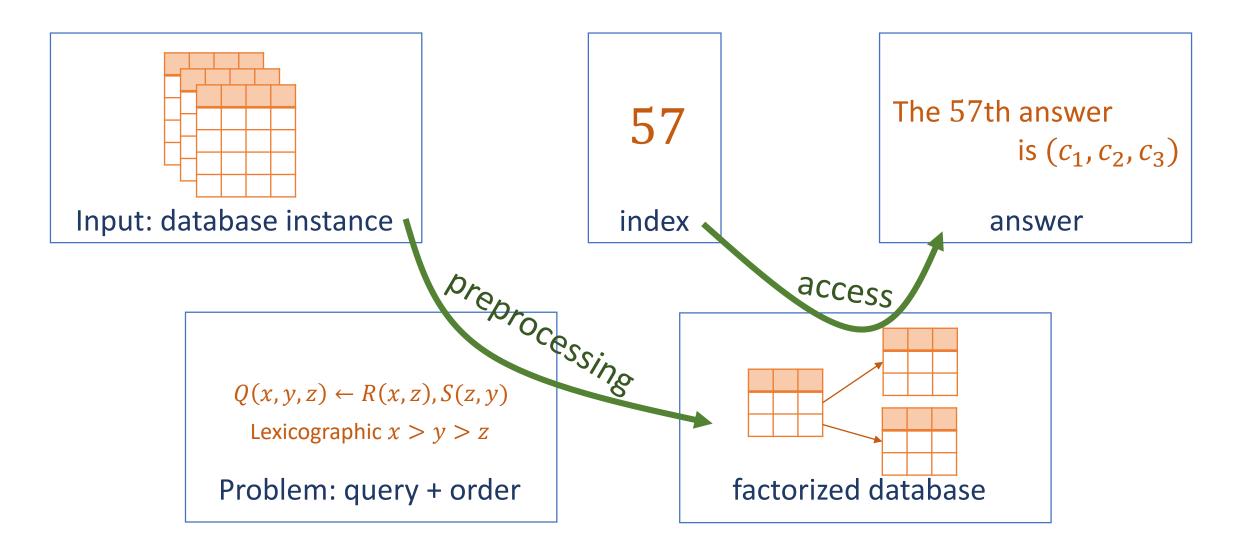
• Solution 3:

count, ranked access to the middle

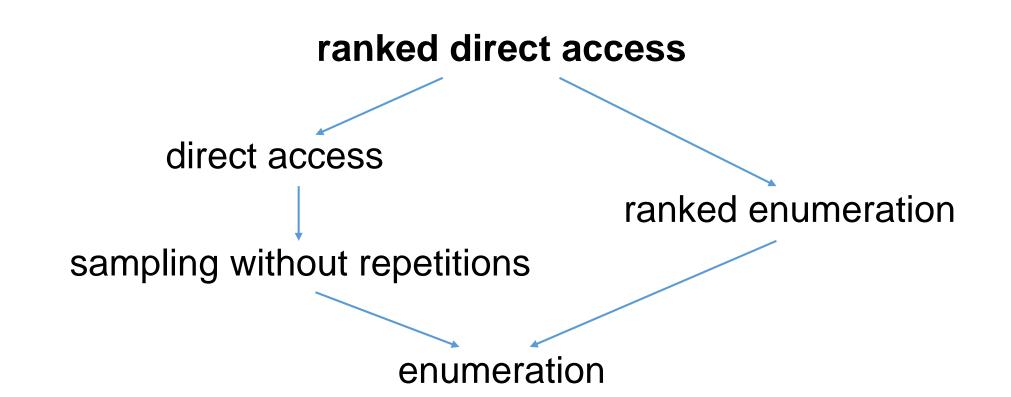
#### Join Results

| Name   | Role       | Address   | Period  | Salary | Cost |  |
|--------|------------|-----------|---------|--------|------|--|
| Jack   | Junior dev | Boston    | 11/2020 | 4000   | 50   |  |
| Jill   | Senior dev | Brookline | 11/2020 | 4500   | 100  |  |
| Joanna | Senior dev | Braintree | 11/2020 | 4500   | 200  |  |
| Jack   | Junior dev | Boston    | 12/2020 | 7000   | 50   |  |
| Jill   | Senior dev | Brookline | 12/2020 | 7100   | 100  |  |
| Joanna | Senior dev | Braintree | 12/2020 | 7100   | 200  |  |

#### Goal: efficient ranked access



### Connection to other problems



## Content

Task

#### • Dichotomy for ideal time complexity:

- Hardness
- Algorithm
- Solutions for hard cases:
  - Functional dependencies
  - Selection problem
  - Extended preprocessing
- Concluding remarks

Talk focus: Join queries, lex orders

### What is the best achievable performance?

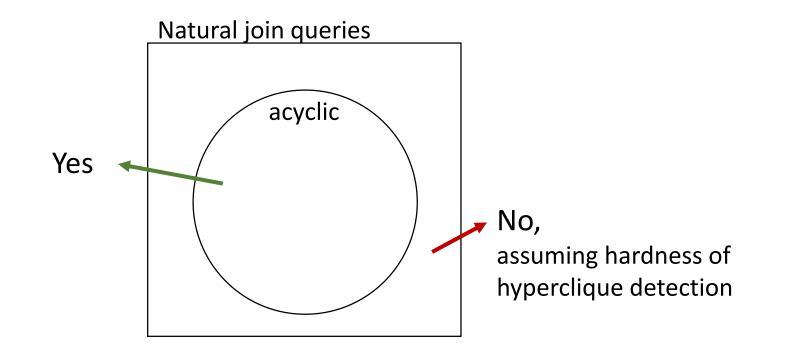
<u>Ideal time guarantees:</u> Preprocessing: linear (to read the input) Access: constant Allow log factors, data complexity

• Can we always achieve that?

## Background: enumeration dichotomy

[Yannakakis 1981][Brault-Baron 2013]

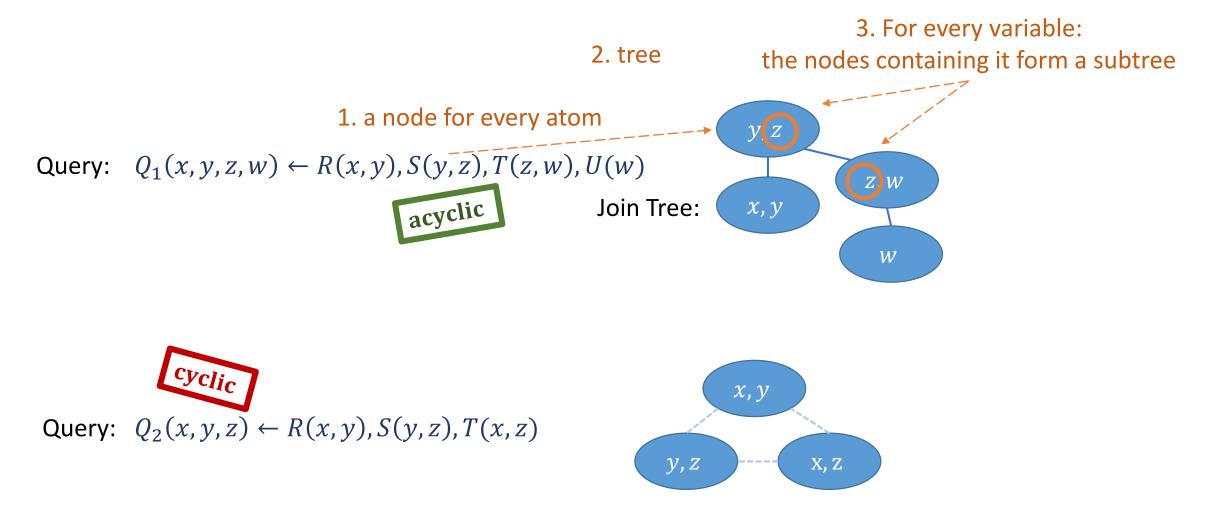
Can the query be solved with linear preprocessing and constant delay?



No linear preprocessing constant access for cyclic joins

## Acyclicity

• A query that has a join tree is called <u>acyclic</u>



### What is the best achievable performance?

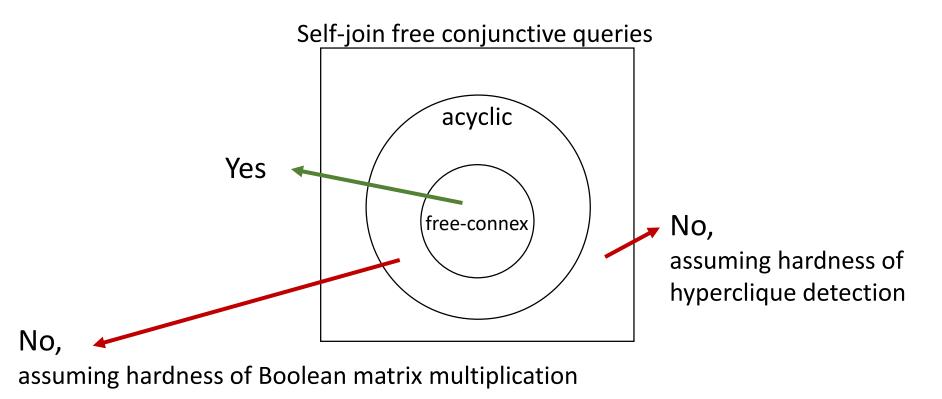
<u>Ideal time guarantees:</u> Preprocessing: linear (to read the input) Access: constant Allow log factors, data complexity

- Can we always achieve that?
   No (never for cyclic joins)
- Can we always achieve that if the query is acyclic?

## Background: enumeration dichotomy

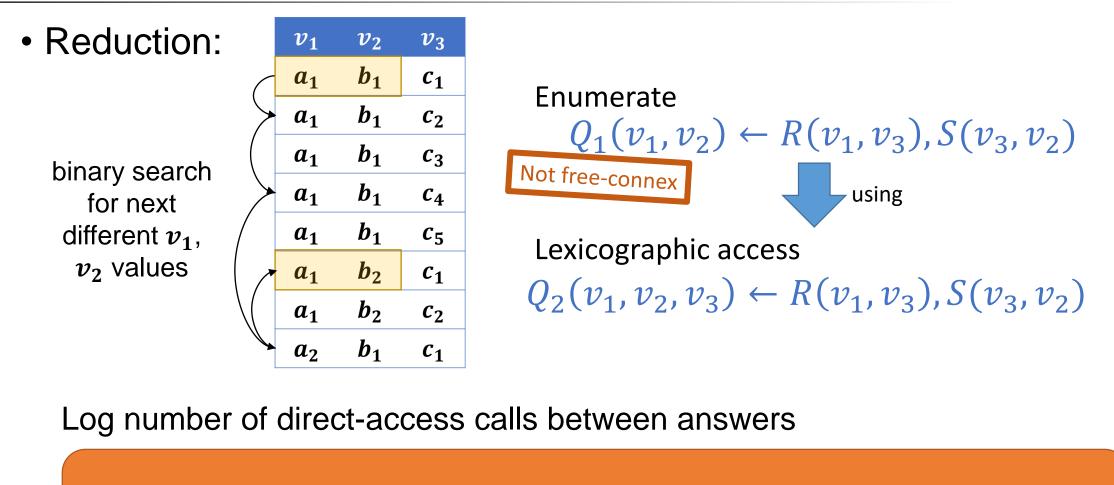
[Bagan, Durand, Grandjean; CSL 07] [Brault-Baron 13]

Can the query be solved with linear preprocessing and constant delay?



Example for non-free-connex CQ:  $Q_1(v_1, v_2) \leftarrow R(v_1, v_3), S(v_3, v_2)$ 

#### Enumeration with Projections via Ranked Access



 $Q_1$  has no enumeration with polylog delay

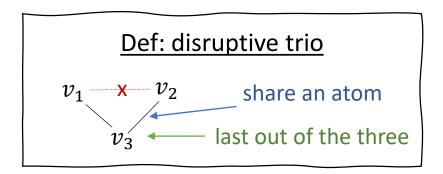
 $Q_2$  has no lexicographic access with polylog access time

## What is the best achievable performance?

<u>Ideal time guarantees:</u> Preprocessing: linear (to read the input) Access: constant Allow log factors, data complexity

- Can we always achieve that? No (never for cyclic joins)
- Can we always achieve that if the query is acyclic? No

• Can be extended whenever there is a disruptive trio



• Example:  $Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$ 

## What is the best achievable performance?

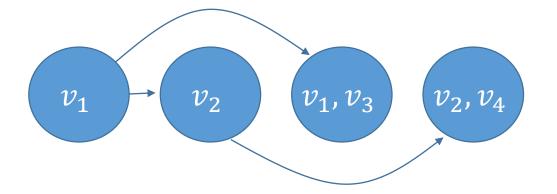
<u>Ideal time guarantees:</u> Preprocessing: linear (to read the input) Access: constant Allow log factors, data complexity

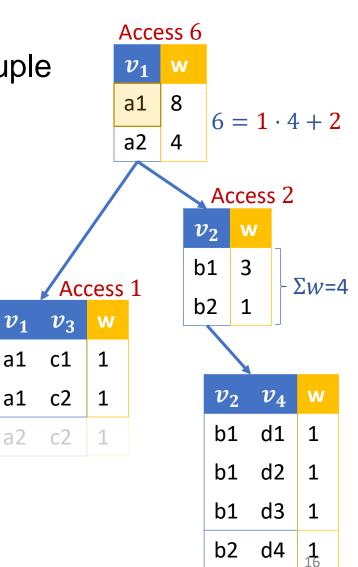
- Can we always achieve that?
   No (never for cyclic joins)
- Can we always achieve that if the query is acyclic? No (never if there is a disruptive trio)
- Can we always achieve that if the query is acyclic and without disruptive trios?

a1

a1

- Preprocessing:
  - DP up the tree
  - computes how many answers in a subtree use each tuple
- Access:
  - recurse down the tree
  - splits the desired index between the children

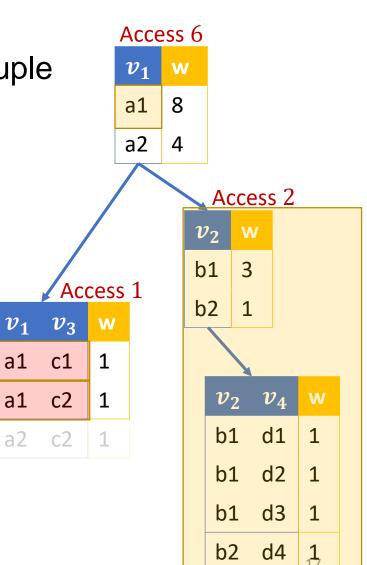




- Preprocessing:
  - DP up the tree
  - computes how many answers in a subtree use each tuple
- Access:
  - recurse down the tree
  - splits the desired index between the children

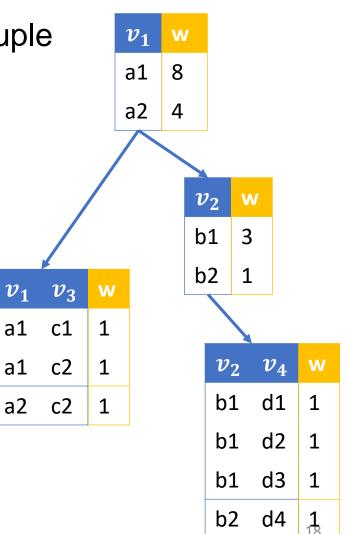
Resulting order:

| <i>v</i> <sub>1</sub> | $v_3$ | $v_2$ | $v_4$ |
|-----------------------|-------|-------|-------|
| a1                    | c1    | b1    | d1    |
| a1                    | c1    | b1    | d2    |
| a1                    | c1    | b1    | d3    |
| a1                    | c1    | b2    | d4    |
| a1                    | c2    | b1    | d1    |
| a1                    | c2    | b1    | d2    |
| a1                    | c2    | b1    | d3    |
| a1                    | c2    | b2    | d4    |
|                       |       |       |       |



- Preprocessing:
  - DP up the tree
  - computes how many answers in a subtree use each tuple
- Access:
  - recurse down the tree
  - splits the desired index between the children

Orders the algorithm can achieve: DFS of a join tree

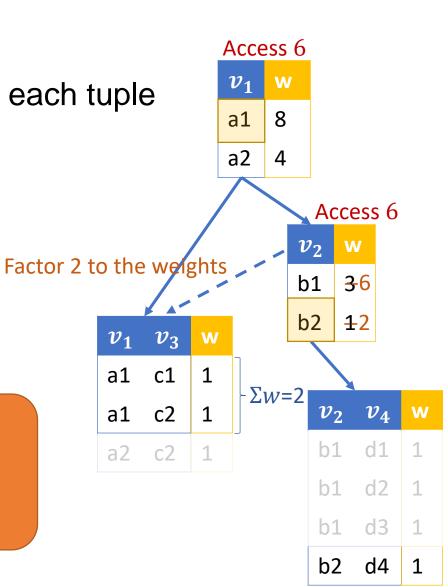


## $Q_2(v_1, v_2, v_3, v_4) \leftarrow R(v_1, v_3), S(v_2, v_4)$

- No disruptive trio
- Not a DFS of a join tree
- Can it be solved with ideal guarantees?
- Yes!

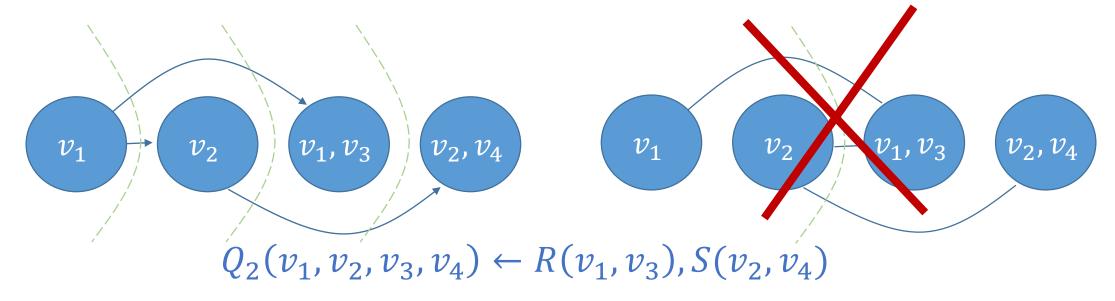
- Preprocessing:
  - DP up the tree
  - computes how many answers in a subtree use each tuple
- Access [PODS 20]:
  - recurse down the tree
  - splits the desired index between the children
- Modified Access [PODS 21]:
  - Move children on the fly

Orders the algorithm can achieve: Orders matching a layered join tree



## Layered Trees

- Layered tree for a **CQ** and a variable **ordering**:
  - Join-tree for an inclusive extension
  - Layer i = one node with last variable  $v_i$
  - The induced graph by the first k layers is a tree, for all k



#### $\exists$ Layered join tree $\Leftrightarrow \neg \exists$ disruptive trio

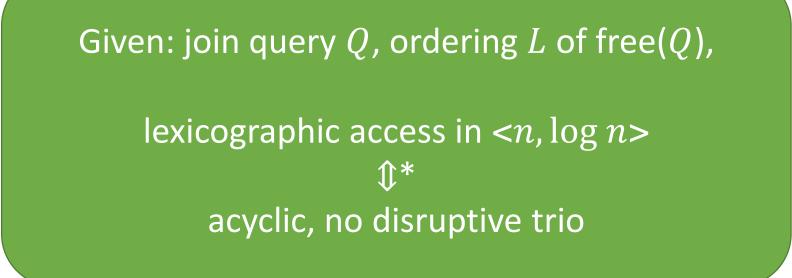
## What is the best achievable performance?

<u>Ideal time guarantees:</u> Preprocessing: linear (to read the input) Access: constant Allow log factors, data complexity

- Can we always achieve that?
   No (never for cyclic joins)
- Can we always achieve that if the query is acyclic? No (never if there is a disruptive trio)
- Can we always achieve that if the query is acyclic and without disruptive trios? Yes!

## **Dichotomy Result**

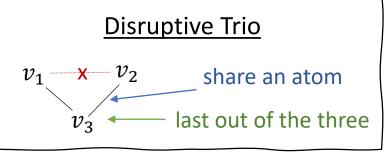
[C, Tziavelis, Gatterbauer, Kimelfeld, Riedewald; PODS 21]





(1) no self-joins

(2) hardness of matrix multiplication and hyperclique detection



## Content

- Task
- Dichotomy for ideal time complexity:
  - Hardness
  - Algorithm

#### Solutions for hard cases:

- Functional dependencies
- Selection problem
- Extended preprocessing
- Concluding remarks

Talk focus: Join queries, lex orders

#### What do we do in the hard cases?

• Can we use **dependencies** in the schema?

## **Unary Functional Dependencies**

- Sometimes there are equivalent tractable (query, order) pairs
- Generic reduction [Carmeli, Kröll; ICDT 18]:  $\begin{array}{l} Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2) & S: v_3 \rightarrow v_2 \\ & \downarrow \text{ linear construction} \\ Q'_1(v_1, v_2, v_3) \leftarrow R'(v_1, v_3, v_2), S(v_3, v_2) \end{array}$
- Task-specific reduction:  $Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$   $\downarrow$  $R: v_1 \rightarrow v_3$

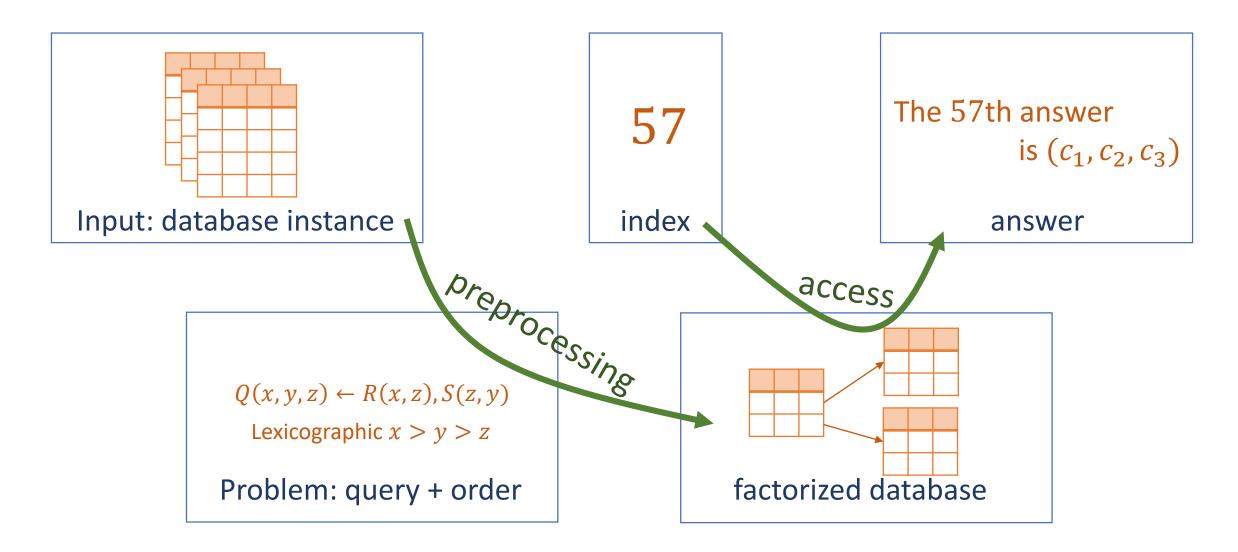
$$Q_1''(v_1,v_3,v_2) \leftarrow R(v_1,v_3\,), S(v_3,v_2)$$

• Dichotomy result: consider an FD-reordered extension

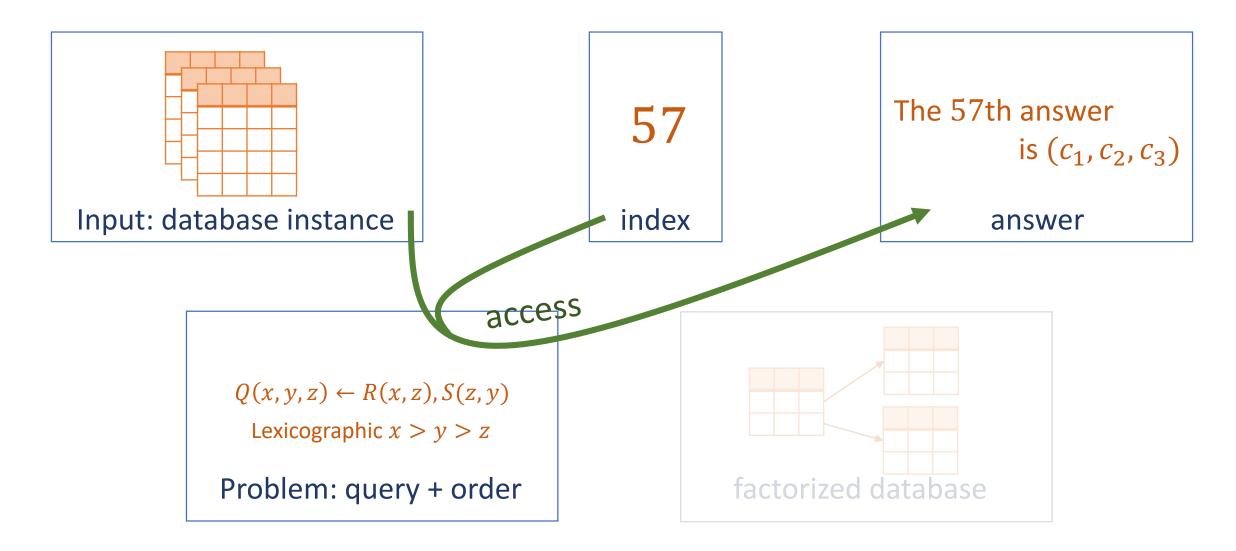
### What do we do in the hard cases?

- Can we use **dependencies** in the schema? Yes, in some cases.
- Can we do it with linear **access** time?

#### **Direct Access Problem**



#### Selection Problem (supports a single access call)



### Selection

- Support single access (instead of multiple calls)
- Allow linear time for an access call
- Additional queries become tractable. Example:  $Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$
- Every acyclic join and lex order have linear time selection!
- Linear time access ⇔ acyclic query (regardless of lex order)

### What do we do in the hard cases?

- Can we use **dependencies** in the schema? Yes, in some cases.
- Can we do it with linear **access** time? Yes, for all acyclic joins (regardless of the lex order).
- How much do we need to pay in **preprocessing** to get log access time?

## Extended Preprocessing: Algorithm

- Join problematic relations at preprocessing
- What to join?
   Disruption-free decomposition:
   For variables in reverse order: based

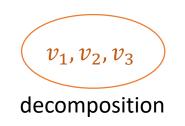
For variables in reverse order: bag with variable and smaller neighbors

#### Examples:

•  $Q_1(v_1, v_2, v_3) \leftarrow R_1(v_1, v_3), R_2(v_3, v_2)$ Disruptive trios:  $(v_1, v_3, v_2)$ 



query hypergraph



## Extended Preprocessing: Algorithm

Examples:

- $Q_1(v_1, v_2, v_3) \leftarrow R_1(v_1, v_3), R_2(v_3, v_2)$ Disruptive trios:  $(v_1, v_3, v_2)$
- $Q_1(v_1, v_2, v_3, v_4) \leftarrow R_1(v_1, v_4), R_2(v_4, v_2), R_3(v_4, v_3)$ Disruptive trios:  $(v_1, v_4, v_3), (v_1, v_4, v_2), (v_2, v_4, v_3)$
- $Q_1(v_1, v_2, v_3, v_4, v_5) \leftarrow R_1(v_1, v_5), R_2(v_5, v_3), R_3(v_3, v_4), R_4(v_4, v_2)$ Disruptive trios:  $(v_1, v_5, v_3), (v_3, v_4, v_2)$

Disruption-free decomposition:

For variables in reverse order: bag with variable and smaller neighbors

 $v_2, v_3, v_4$ 

 $v_1, v_3, v_5$ 

 $v_1, v_2, v_3$ 

 $v_1, v_2, v_3, v_4$ 

 $v_2$ 

 $v_1, v_2, v_3$ 

 $v_3$ 

 $\mathcal{V}_{\mathbf{A}}$ 

V-

 $v_{2}$ 

 $v_3$ 

## Extended Preprocessing: Hardness

- Cost:  $n^{\iota}$  $\iota = \text{incompatibility number} = \text{largest fractional edge cover of a bag}$ 
  - Can we do better?
    - No better decomposition exists
    - Other techniques? probably not (due to conditional lower bound)
  - Reductions:

access to query  $\Rightarrow$  access to star query  $\Rightarrow$  testing for projected star  $\Rightarrow$  online set-disjointness  $\Rightarrow$  Zero-clique  $v_{\mu}$  ...  $v_{4}$ 

star query:

 $\iota$  = fractional edge cover of a bag = fractional independent set of the same



• Zero-clique conjecture:  $\forall k, \varepsilon$ : no randomized algorithm to detect a k-clique with 0 weight in a weighted graph in  $O(n^{k-\varepsilon})$  Given: join query Q, ordering L of free(Q), lexicographic access in  $\langle n^k, \log n \rangle$  $\uparrow^*$  $\iota(Q,L) \leq k$ 

\* Lower bounds assume:

(1) no self-joins(2) hardness of zero-clique detection

## Content

- Task
- Dichotomy for ideal time complexity:
  - Hardness
  - Algorithm
- Solutions for hard cases:
  - Functional dependencies
  - Selection problem
  - Extended preprocessing
- Concluding remarks

Talk focus: Join queries, lex orders

## Connections to known notions

#### • Elimination order

- No disruptive trio ⇔ reverse elimination order [Brault-Baron 13]
- d-trees
  - Translation d-tree to tree decompositions [Olteanu, Závodný; TODS 15] gives a layered join tree of an order matching the tree
  - The access algorithm can be applied directly on d-trees

## Conclusion

- More in our papers:
  - Joins with projection
  - Partial lexicographic orders
  - Sum of weights order
- Future work:
  - Preprocessing needed for the above extensions
  - More expressive query classes
  - Preprocessing-access tradeoff

## Extra Slides

## Introduction

### Related work

- Enumeration [BaganDurandGrandjean CSL'07] [Brault-Baron thesis 2013] const (or log) delay possible ⇔\* free-connex
- <u>Ranked enumeration</u> [TziavelisAjwaniGatterbauerRiedewaldYang PVLDB'20] sum of weights (or lexicographic), log delay, free-connex
- <u>Direct access</u> (underlying restricted order support)
  - via elimination order [Brault-Baron thesis 2013]
  - via join tree [CZeeviBerkholzKimelfeldSchweikardt PODS'20]
  - via q-tree (dynamic settings, q-hierarchical only) [Keppeler thesis 2020]

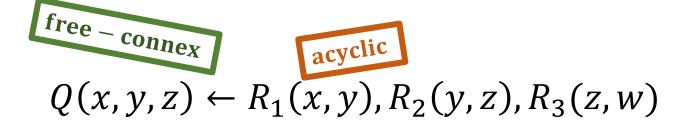
All using: data complexity, RAM model

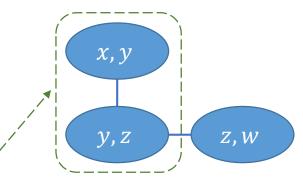
## Definitions

#### An acyclic CQ has a graph with: A free-connex CQ also requires:

1. a node for every atom possibly also subsets 2. tree

3. for every variable X: the nodes containing X form a subtree





4. a subtree with exactly the free variables

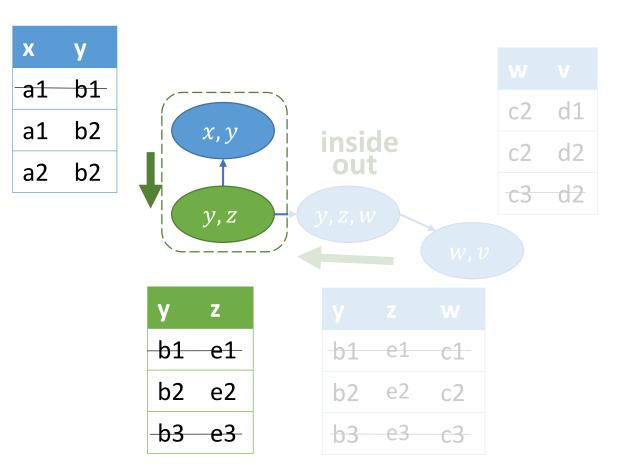


### Free-Connex CQs

#### $Q(x, y, z) \leftarrow R_1(x, y), R_2(y, z, w), R_3(w, v)$

#### Can be reduced to full acyclic

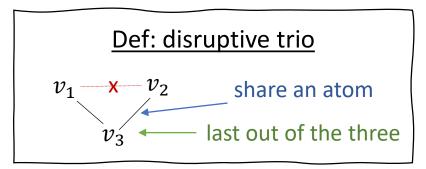
- 1. Find a join tree
- 2. Remove dangling tuples [Yannakakis81]
- 3. Ignore existential variables
- Then, joined efficiently



# Lexicographic Orders

### Hardness Result

• Can be extended whenever there is a disruptive trio



Example:  $Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$ 

• Proof idea:

Using binary search: truncate the lex order to make  $v_3$  existential and  $v_1, v_2$  free Known for acyclic CQs: not free-connex  $\Leftrightarrow$  exists free-path

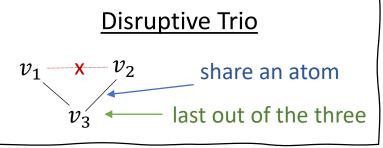
(chordless path, endpoints free, middle existential)

The obtained CQ has a free-path  $v_1 - v_3 - v_2$ 

#### Dichotomy

 $\bigvee Q_1(v_1, v_2, v_3) \leftarrow R(v_1, v_2), S(v_2, v_3)$  $\bigotimes Q_2(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$ 

Given: CQ Q, ordering L of free(Q),



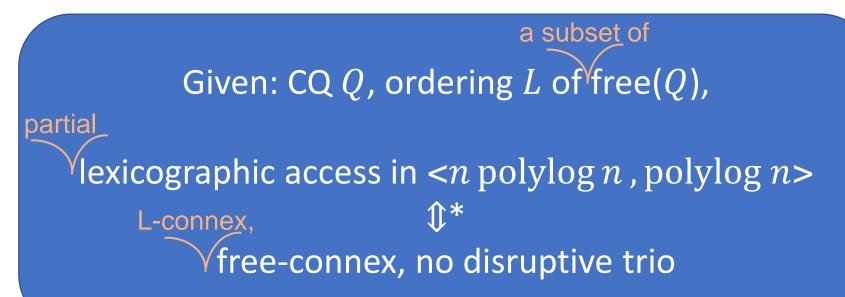
\* Lower bounds assume:

(1) no self-joins

(2) hardness of matrix multiplication and hyperclique detection

## Partial Lexicographical Ordering

possible ⇔ a completion for a feasible full ordering

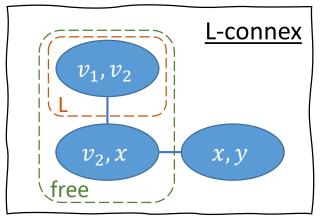


$$Q_{1}(v_{1}, v_{2}, x) \leftarrow R(v_{1}, v_{2}), S(v_{2}, x), T(x, y) \checkmark$$
$$Q_{2}(v_{1}, v_{2}, x) \leftarrow R(v_{1}, x), S(x, v_{2}) \checkmark$$

\* Lower bounds assume:

(1) no self-joins

(2) hardness of matrix multiplication and hyperclique detection



# Sum of Weights

### Dichotomy



Tractability is trivial  
$$Q_1(x, z) \leftarrow R(x, y, z), S(y, z)$$

 $Q_2(\mathbf{x}, \mathbf{z}) \leftarrow R(\mathbf{x}, \mathbf{y}), S(\mathbf{y}, \mathbf{z})$ 

\* Lower bounds assume:

(1) no self-joins

(2) hardness of 3-SUM and hyperclique detection

#### Hardness

• Observation: Binary search finds a weight with logarithmic accesses

#### **3SUM hypothesis**

given 3 sets of integers |A| = |B| = |C| = n, deciding  $\exists a \in A, b \in B, c \in C$  s.t. a + b + c = 0cannot be done in time  $O(n^{2-\varepsilon})$  for any  $\varepsilon > 0$ 

• Use two independent free variables

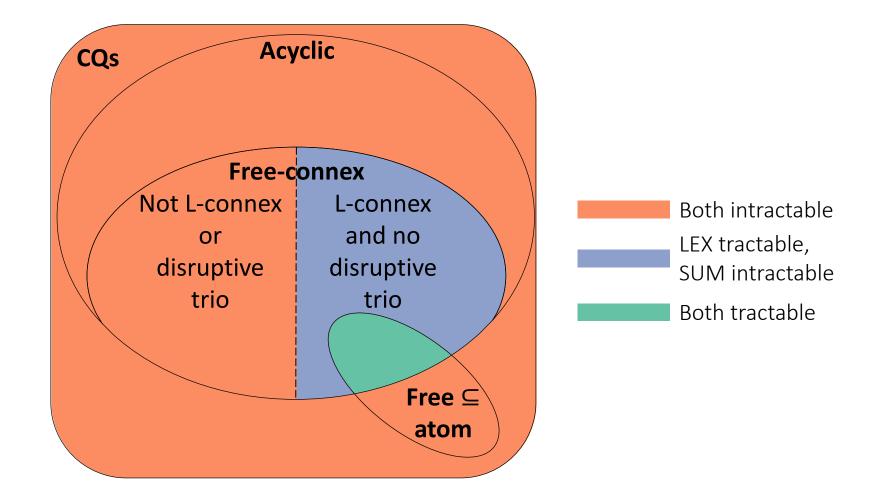
$$Q_2(\mathbf{x}, \mathbf{z}) \leftarrow R(\mathbf{x}, y), S(y, \mathbf{z})$$

Direct access impossible in  $< n^{2-\varepsilon}, n^{1-\varepsilon} >$ 

$$\begin{array}{c|ccc} x & y \\ a_1 & 0 \\ a_2 & 0 \end{array} \qquad \begin{array}{c} y & z \\ 0 & b_1 \\ 0 & b_2 \end{array}$$

$$\begin{array}{c} A & B \end{array}$$

#### **Direct-Access Overview**



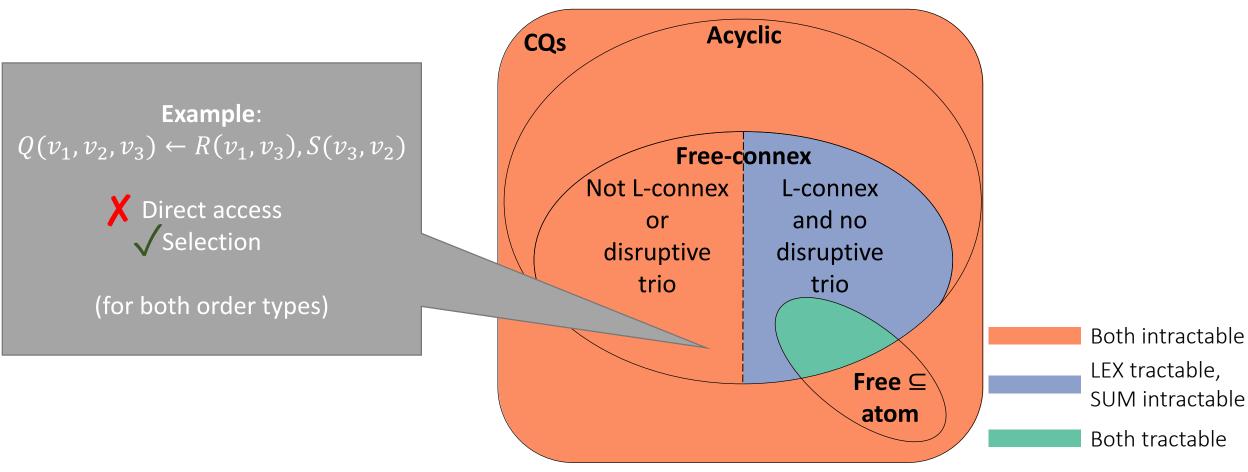
\* Lower bounds assume:

(1) no self-joins

(2) hardness of 3-SUM, Boolean matrix multiplication, and hyperclique detection

# Selection

#### **Direct-Access Overview**



\* Lower bounds assume:

(2) hardness of 3-SUM, Boolean matrix multiplication, and hyperclique detection

<sup>(1)</sup> no self-joins

#### **Selection Dichotomy**

#### Given: full CQ Q,

 $Q_1(x, y, z) \leftarrow R(x, y), S(y, z), T(y) \qquad \checkmark$  $Q_2(x, y, z, u) \leftarrow R(x, y), S(y, z), T(z, u) \qquad \checkmark$ 

\* Lower bounds assume:

(1) no self-joins

(2) hardness of 3-SUM and hyperclique detection

#### Selection

• Sometimes: efficient selection, no efficient direct access

 $Q_2(v_1, v_2, v_3) \leftarrow R(v_1, v_3), S(v_3, v_2)$ 



[Frederickson Johnson 1984] <u>Selection on a union of sorted matrices</u> of dimensions  $m_i \times n_i$ possible in time  $O(\sum max(m_i, n_i))$ 

### Hardness

- Assumption:  $Q_1$  cannot be decided in quasilinear time
- Reduction:
  - Use the same relations
  - Need to identify answers to  $Q_2$  with x = w
  - Can identify answers with weight 0 (binary search)

| $Q_2$ answers: |   |   |   |        |
|----------------|---|---|---|--------|
| X              | у | Z | W | weight |
| а              | b | С | а | 0      |
| k              | I | m | n | -1     |

Decide

$$Q_1() \leftarrow R(x, y), S(y, z), T(z, x)$$
  
using

 y weights
 z weights

 b: 0
 c: 0

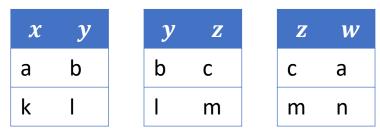
 l: 0
 m: 0

 x weights
 w weights

 a: 1
 a: -1

 k: 2
 n: -3

Sum-of-weights selection  $Q_2(x, y, z, w) \leftarrow R(x, y), S(y, z), T(z, w)$ 



- Log number of selection calls
  - $Q_1$  selection with quasilinear time, contradiction

# **Extended Preprocessing**

Given: join query Q, ordering L of free(Q),

lexicographic access in <n<sup>ι(Q,L)</sup>, log n>
 ∀ε, no lex access in <n<sup>ι(Q,L)-ε</sup>, polylog n>, assuming hardness of zero-clique detection