
In-Database Handling of
Missing Data

Milos Nikolic
University of Edinburgh

FDB Workshop, August 2022

Joint work with Massimo Perini

(Clean) Data Is Important

Data underlies decision making

Data is key for data analytics

The need for clean data

Value derived from data is as good as the data itself

Garbage in, garbage out

Focus of This Talk: Missing Data

Missing data is common in practice

Human errors, equipment malfunctions, data integration, etc.

Problems

Can introduce significant bias

Reduces the power of reasoning

Requires special handling as tools assume complete data

Handling Missing Values

Common approach: discard tuples with missing values

May introduce bias in the analysis

Reduces dataset size, especially in multivariate analysis

Data imputation

Preserve all tuples by replacing missing values with estimates

Imputed dataset can then be analyzed using standard techniques

Data Imputation

Mean imputation

Replace missing values with the mean of observed values for that attribute

Preserves the mean but distorts estimated variances and correlations

Regression imputation

Regression model for predicting Y from X = (X1, …, Xn)

Overstates the strength of the relationship between Y and X

No uncertainty about the predicted value

Multiple Imputation

Compute multiple imputations for each missing values

Produces multiple plausible versions of the complete dataset

The analysis results are combined to get estimates and std errors

Multiple Imputation by Chained Equations (MICE)

Series of regression models predicting each variable with
missingness using all other variables

Multiple Imputation by Chained Equations (MICE)

Age Income Level

40 40,000 Senior

24 45,000 Senior

32 35,000 Junior

Age Income Level

40 x Senior

24 45,000 Senior

27.8 35,000 Junior

Age Income Level

40 40,000 Senior

24 45,000 Senior

27.8 35,000 Junior

Mean imputation

Predict Age

Age, Level → Income

Age Income Level

40 56,764 Senior

24 45,000 Senior

27.8 35,000 Junior

Predict Income

Age Income Level

40 x Senior

24 45,000 x

x 35,000 Junior

Age Income Level

40 40,000 Senior

24 45,000 Senior

x 35,000 Junior

Income, Level → Age

x – missing value

Repeat for Level, Age, Income, …

Round robin until convergence

MICE Overview

missing A

Imputed

Dataset

tuples with missing A-values

tuples with complete A-values
attribute A

MICE Overview

Models trained over different subsets of data

Models may differ: regression and classification

PREDICT

TRAIN

missing A

𝜃

imputed A

Imputed

Dataset

PREDICT

TRAIN

missing B

𝜃

imputed B

attribute A

attribute B

...

MICE Overview

Common assumption: ≫ | |

PREDICT

TRAIN

missing A

𝜃

imputed A

Imputed

Dataset

PREDICT

TRAIN

missing B

𝜃

imputed B

attribute A

attribute B

...

missing Retraining is $$$!

$$$$$

$$$$$

$

$

TRAIN

PREDICT

PREDICT

TRAIN

Data Imputation: State of Affairs

Statistical libraries can handle complex imputation but do not scale

DBMSs can handle large data but not complex imputation

Possible solution: UDFs over denormalized data

Joining data is expensive

Data export/import is costly

In-Database Data Imputation

Goal: Efficient, scalable, in-database MICE implementation

Step 1: Reformulate model training as DB aggregation

Linear regression (continuous) [Schleich & Olteanu], [Nikolic & Olteanu]

Gaussian Discriminant Analysis (categorical)

Step 2: Exploit sharing opportunities across models

Linear Regression

Linear model

Loss function

Gradient descent

[Schleich & Olteanu]

Linear Regression

Gradient rewriting

Compute data-dependent part

Aggregates Qjk are entries in matrix Σ = X TX

x1 x2 … xm

𝘟
R1

R2
Rn

for each (Xj,Xk):
Qjk = SELECT SUM(Xj * Xk)

FROM R1 JOIN R2 JOIN ... JOIN Rn

Linear Regression over Joins

Problem: Compute a batch of SUM(xi * xj), for each (xi, xj)

Chances for sharing computation

SUMs of similar form & over same relations

No DBMS can do it efficiently

COMPUTE 𝘟 T𝘟

CONVERGENCEQ = SELECT SUM(X1 * X1), ..., SUM(X1 * Xn),
...
SUM(Xn * X1), ..., SUM(Xn * Xn)

FROM R1 JOIN R2 JOIN ... JOIN Rn

VERY FAST
input not needed

Ring Generalization

Problem: Compute X TX once for all iterations

Solution:

Define a ring for aggregate values

Compute just ONE compound aggregate

Q = SELECT SUM(X1 * X1), ..., SUM(X1 * Xn),
...
SUM(Xn * X1), ..., SUM(Xn * Xn)

FROM R1 JOIN R2 JOIN ... JOIN Rn

[Nikolic & Olteanu]

Ring Generalization for X TX
Compute XTX as a triple of aggregates (c, s, Q)

(ca, sa, Qa) + (cb, sb, Qb) = (ca + cb, sa + sb, Qa + Qb)

(ca, sa, Qa) * (cb, sb, Qb) = (cacb, cbsa + casb, cbQa + caQb + sasbT + sbsaT)

SUM(1) reused for all SUM(xi) and SUM(xi * xj)

SUM(xi) reused for all SUM(xi * xj)

(), ,
SUM(1) SUM(xi) SUM(xi*xj)

Recap: Linear Regression over Joins

Solution: Compute XTX as ONE aggregate

but with a specific payload ring and gi functions

Fully shared computation

Factorized computation as for ordinary sums

Incremental computation

Q = SELECT SUM(g1(X1) * ... * gn(Xn))
FROM R1 JOIN R2 JOIN ... JOIN Rn 1(),

i
0
x
0

0
0
0

i
0
x2
0

0
0
0

i,gi(x) =

Step 1: ML Problem ⇒ DB Problem

PREDICT

COMPUTE TRAIN

missing A

𝜃XTX

imputed A

$

$

$$$

PREDICT

TRAIN

missing A

𝜃

imputed A

BEFORE

AFTER
COMPUTE TRAIN

PREDICT

Checkpoint: In-Database MICE

XTX computed over overlapping subsets of complete data. Sharing?

PREDICT

COMPUTE TRAIN

missing B

𝜃XTX

imputed B

PREDICT

COMPUTE TRAIN

missing A

𝜃XTX

imputed A

attribute A

attribute B

...

Step 2: Sharing Opportunities

PREDICT

COMPUTE TRAIN

missing A

𝜃XTX

imputed A

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing A XTX −

PREDICT

TRAIN 𝜃

imputed A

XTX

≡

Step 2: Sharing Opportunities (Cont.)

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing A XTX −

PREDICT

TRAIN 𝜃

imputed A

XTX

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing B XTX −

PREDICT

TRAIN 𝜃

imputed B

XTX

Step 2: Sharing Opportunities (Cont.)

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing A XTX −

PREDICT

TRAIN 𝜃

imputed A

XTX

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing B XTX −

PREDICT

TRAIN 𝜃

imputed B

XTX

Too expensive!

Step 2: Sharing Opportunities (Cont.)

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing A XTX −

PREDICT

TRAIN 𝜃

imputed A

XTX

XTX

COMPUTEmissing B XTX −

PREDICT

TRAIN 𝜃

imputed B

XTX

Reuse!

Delta?

Step 2: Sharing Opportunities (Cont.)

Entire

Dataset
XTXCOMPUTE

COMPUTEmissing A XTX −

PREDICT

TRAIN 𝜃

imputed A

XTX

XTX

COMPUTEmissing B XTX −

PREDICT

TRAIN 𝜃

imputed B

XTX

Paid only once!

+ COMPUTEXTX

$$$

$ $

$

$

$

$

$

COMPUTE

COMPUTE TRAIN

PREDICT

COMPUTE

PREDICT

TRAINCOMPUTE

MICE Implementation in PostgreSQL

CREATE TYPE cofactor

Parallel-safe operators +, -, *

Support for continuous & categorical attributes

Avoids one-hot encoding

Model training in UDFs

Linear regression and GDA

MICE driver in PL/pgSQL

SUM(Xi*Xj)

Header

SUM(Xi)
GROUP BY Xj

SUM(1)
GROUP BY Xi,Xj

Memory representation
of a ring value

Implementation Challenges

Flat representation in memory

One contiguous memory chunk

No pointers to the outside of
allocated memory

Max space for a * b is unknown beforehand

Solution:
Dry-run to compute max size of a * b

SUM(Xi*Xj)

Header

SUM(Xi)
GROUP BY Xj

SUM(1)
GROUP BY Xi,Xj

fixed size

variable size

Memory representation
of a ring value

Implementation Challenges (Cont.)

No automatic support for pushing SUM past joins

Solution: rewrite/generate SQL queries to exploit factorization

Large UPDATE queries are slow

Ex: imputing 1M values of one attribute can take few hours

Solution: avoid in-place updates

Store imputed values in temporary tables

Recompute on-the-fly as (R LEFT OUTER JOIN temp)

Summary

Data imputation within a DBMS

Ring computation + factorization + sharing

Further room for improvements in dealing with categorical values

Using existing DBMSs for in-database ML ?

Performance looks promising

Few quirks complicate implementation

