In-Database Handling of Missing Data

Milos Nikolic

University of Edinburgh

FDB Workshop, August 2022

Joint work with Massimo Perini

(Clean) Data Is Important

Data underlies decision making

Data is key for data analytics

The need for clean data

Value derived from data is as good as the data itself

Garbage in, garbage out

Focus of This Talk: Missing Data

Missing data is common in practice

Human errors, equipment malfunctions, data integration, etc.

Problems

Can introduce significant bias

Reduces the power of reasoning

Requires special handling as tools assume complete data

Handling Missing Values

Common approach: discard tuples with missing values May introduce bias in the analysis Reduces dataset size, especially in multivariate analysis

Data imputation

Preserve all tuples by replacing missing values with estimates Imputed dataset can then be analyzed using standard techniques

Data Imputation

Mean imputation

Replace missing values with the mean of observed values for that attribute

Preserves the mean but distorts estimated variances and correlations

Regression imputation

Regression model for predicting Y from $X = (X_1, ..., X_n)$

Overstates the strength of the relationship between Y and X

No uncertainty about the predicted value

Multiple Imputation

Compute multiple imputations for each missing values Produces multiple plausible versions of the complete dataset The analysis results are combined to get estimates and std errors

Multiple Imputation by Chained Equations (MICE)

Series of regression models predicting each variable with missingness using all other variables

Multiple Imputation by Chained Equations (MICE)

Age	Income	Level
40	X	Senior
24	45,000	x
x	35,000	Junior

x – missing value

Age	Income	Level
40	40,000	Senior
24	45,000	Senior
X	35,000	Junior
Incom	e, Level –	→ Age

Age	Income	Level
40	X	Senior
24	45,000	Senior
27.8	35,000	Junior

Age, Level \rightarrow Income

Age	Income	Level
40	40,000	Senior
24	45,000	Senior
32	35,000	Junior

Mean imputation

Age	Income	Level
40	40,000	Senior
24	45,000	Senior
27.8	35,000	Junior
ŀ	Predict Age	е

Age	Income	Level
40	56,764	Senior
24	45,000	Senior
27.8	35,000	Junior

Predict Income

Repeat for Level, Age, Income, ...

Round robin until convergence

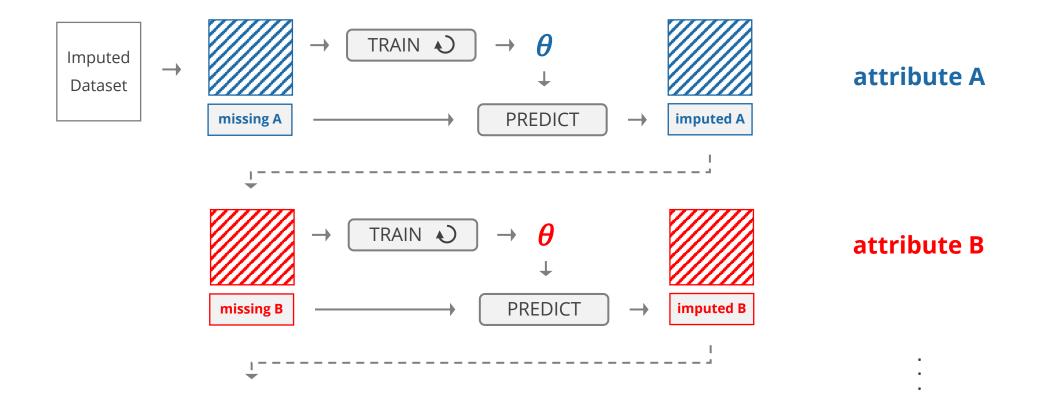
MICE Overview

tuples with complete A-values

tuples with missing A-values

attribute A

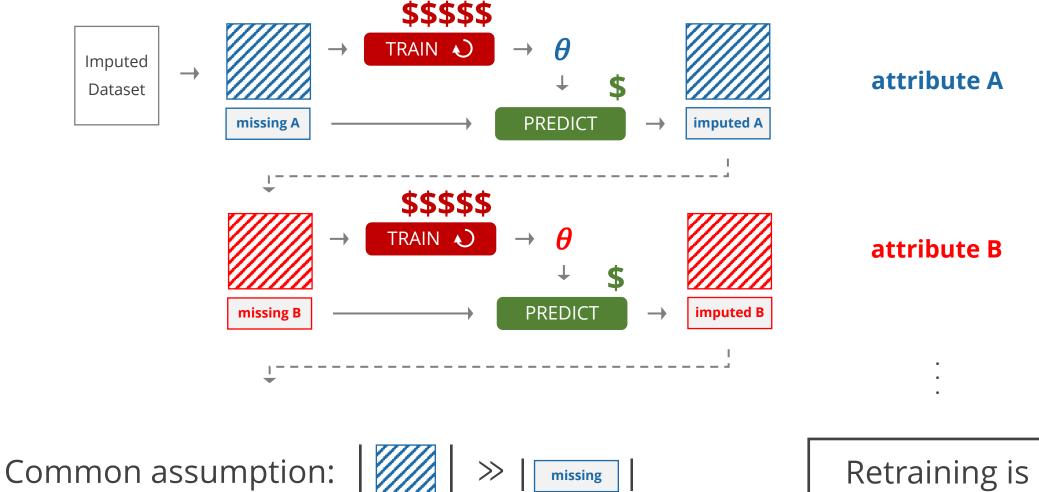
MICE Overview



Models trained over different subsets of data

Models may differ: regression and classification

MICE Overview



 \gg missing

Data Imputation: State of Affairs

Statistical libraries can handle complex imputation but do not scale

DBMSs can handle large data but not complex imputation

Possible solution: UDFs over denormalized data

Joining data is expensive

Data export/import is costly

In-Database Data Imputation

Goal: Efficient, scalable, in-database MICE implementation

Step 1: Reformulate model training as DB aggregation

Linear regression (continuous) [Schleich & Olteanu], [Nikolic & Olteanu]

Gaussian Discriminant Analysis (categorical)

Step 2: Exploit sharing opportunities across models

Linear Regression

[Schleich & Olteanu]

Linear model

$$LR = \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3 + \dots + \theta_n X_n = \sum_{j \in [n]} \theta_j X_j$$

Loss function

$$J(\theta) = \frac{1}{2|\mathbf{X}|} \sum_{(\mathbf{x}, y) \in \mathbf{X}} (\sum_{j \in [n]} \theta_j x_j - y)^2 = \frac{1}{2|\mathbf{X}|} \sum_{\mathbf{x} \in \mathbf{X}} (\sum_{\substack{j \in [n] \\ \theta_j = -1}} \theta_j x_j)^2$$

Gradient descent repeat until convergence:

$$\forall k \in [n] : \theta_k := \theta_k - \alpha \cdot \nabla_k J(\vec{\theta})$$
$$:= \theta_k - \alpha \cdot \frac{1}{|X|} \sum_{x \in X} \left(\sum_{j \in [n]} \theta_j x_j \right) x_k$$

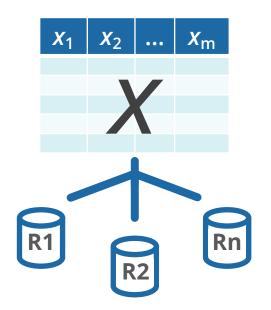
Linear Regression

Gradient rewriting

$$\nabla_{k} J(\vec{\theta}) := \frac{1}{|\mathbf{X}|} \sum_{\mathbf{x} \in \mathbf{X}} (\sum_{j \in [n]} \theta_{j} \mathbf{x}_{j}) \mathbf{x}_{k}$$
$$:= \frac{1}{|\mathbf{X}|} \sum_{j \in [n]} \theta_{j} \cdot \sum_{\mathbf{x} \in \mathbf{X}} (\mathbf{x}_{j} \cdot \mathbf{x}_{k})$$

Compute data-dependent part

for each (X_j, X_k) : $Q_{jk} = SELECT SUM(X_j * X_k)$ FROM R1 JOIN R2 JOIN ... JOIN Rn



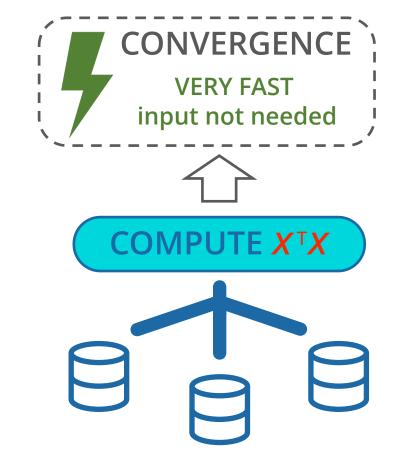
Aggregates Q_{jk} are entries in matrix $\Sigma = X^T X$

Linear Regression over Joins

Problem: Compute a batch of SUM($x_i * x_j$), for each (x_i, x_j)

Q = SELECT SUM $(X_1 * X_1)$, ..., SUM $(X_1 * X_n)$, SUM $(X_n * X_1)$, ..., SUM $(X_n * X_n)$ FROM R1 JOIN R2 JOIN ... JOIN Rn

SUMs of similar form & over same relations



Ring Generalization

[Nikolic & Olteanu]

Problem: Compute **X**^T**X** once for all iterations

Q = SELECT SUM $(X_1 * X_1)$, ..., SUM $(X_1 * X_n)$, SUM $(X_n * X_1)$, ..., SUM $(X_n * X_n)$ FROM R1 JOIN R2 JOIN ... JOIN Rn

Solution:

Define a ring for aggregate values

Compute just ONE compound aggregate

Ring Generalization for X^T X

Compute X^TX as a triple of aggregates (c, s, Q)



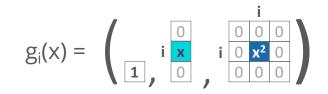
 $(c_{a}, s_{a}, Q_{a}) + (c_{b}, s_{b}, Q_{b}) = (c_{a} + c_{b}, s_{a} + s_{b}, Q_{a} + Q_{b})$ $(c_{a}, s_{a}, Q_{a}) * (c_{b}, s_{b}, Q_{b}) = (c_{a}c_{b}, c_{b}s_{a} + c_{a}s_{b}, c_{b}Q_{a} + c_{a}Q_{b} + s_{a}s_{b}^{T} + s_{b}s_{a}^{T})$

SUM(1) reused for all SUM(x_i) and SUM($x_i * x_j$) SUM(x_i) reused for all SUM($x_i * x_j$)

Recap: Linear Regression over Joins

Solution: Compute *X*^T*X* as ONE aggregate

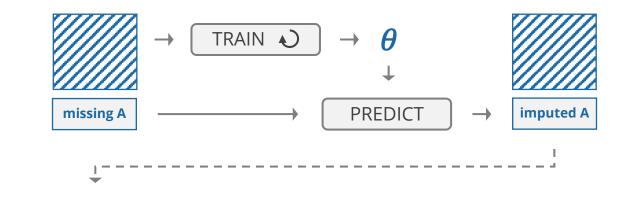
Q = SELECT SUM $(g_1(X_1) * \dots * g_n(X_n))$ FROM R1 JOIN R2 JOIN ... JOIN Rn



but with a specific payload ring and g_i functions

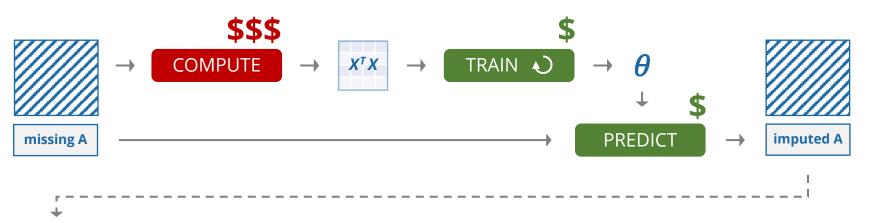
- Fully shared computation
- ✓ Factorized computation as for ordinary sums
- Incremental computation

Step 1: ML Problem ⇒ DB Problem

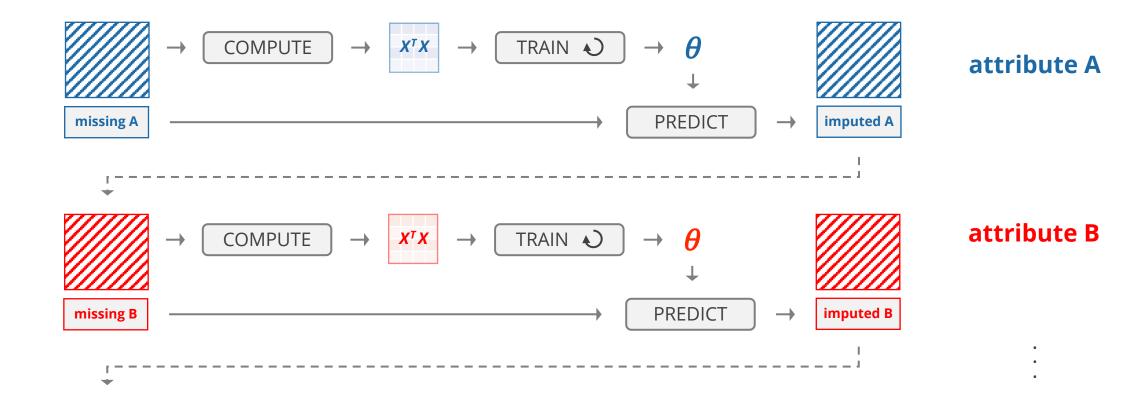


BEFORE

AFTER

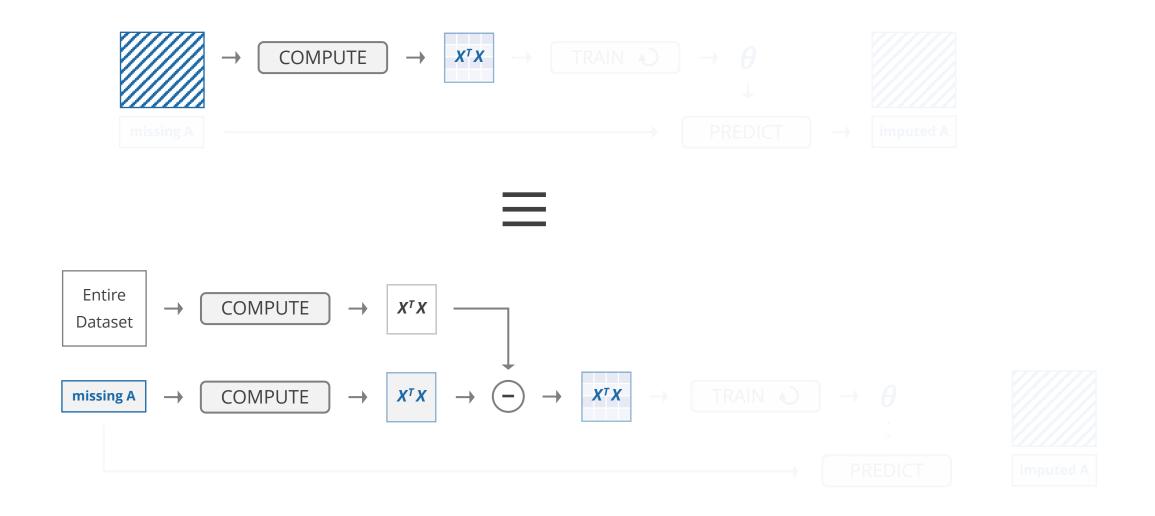


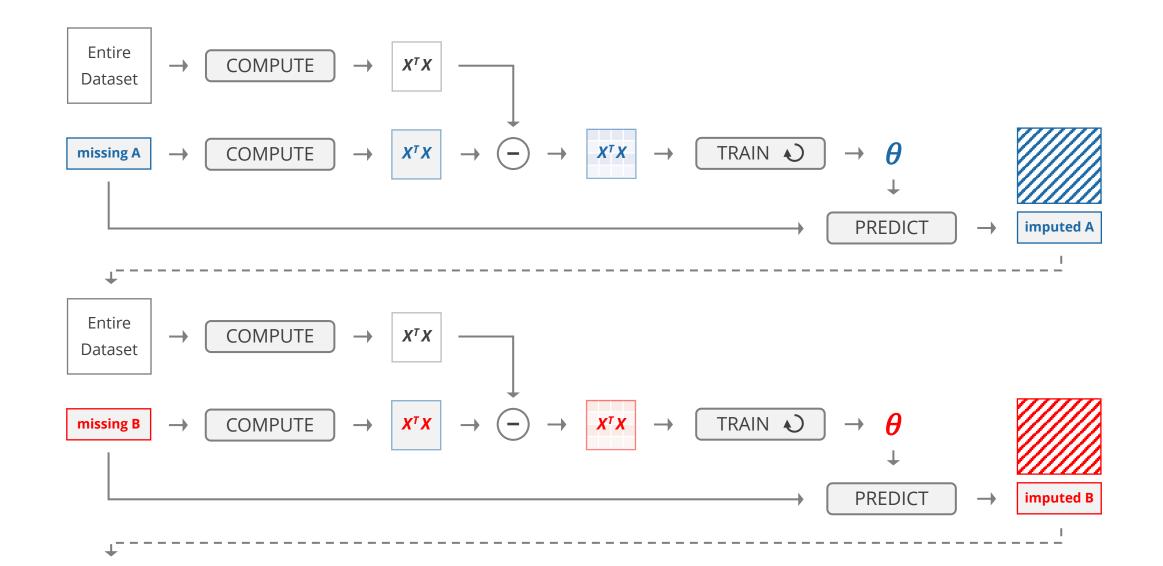
Checkpoint: In-Database MICE

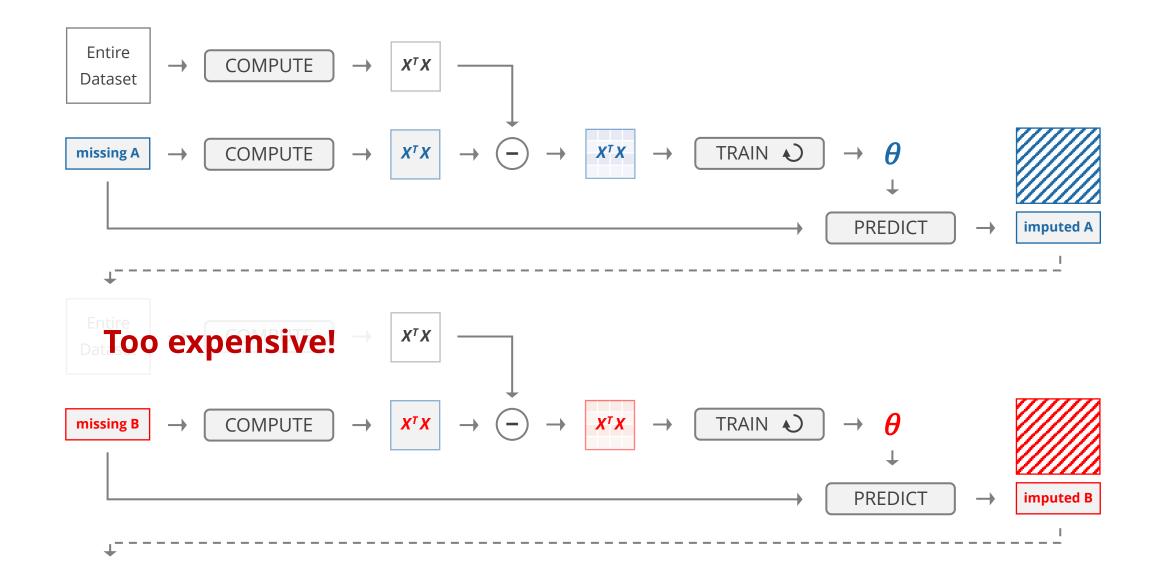


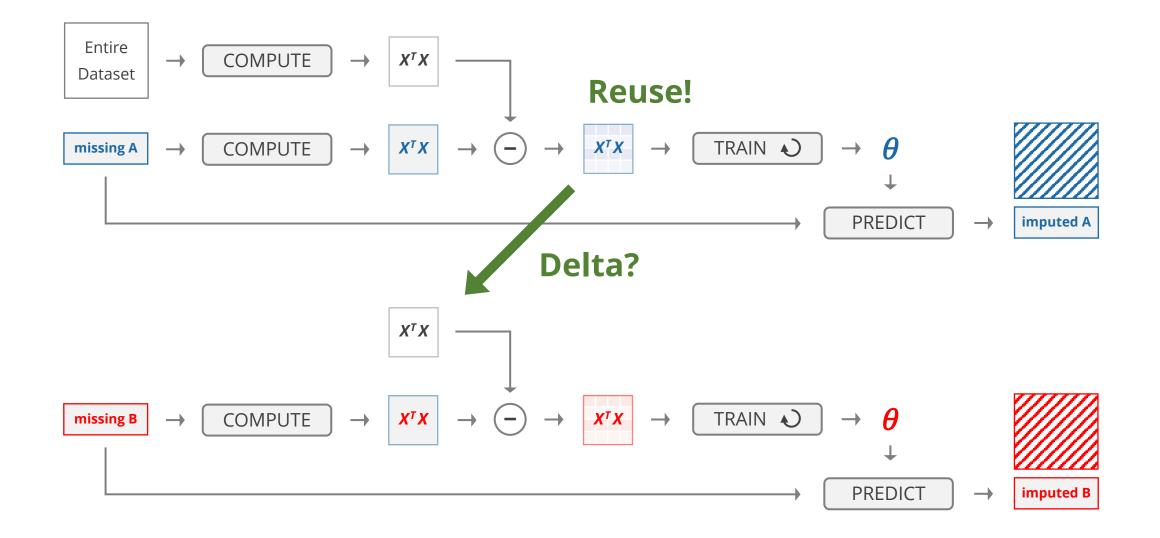
 $X^T X$ computed over overlapping subsets of complete data. Sharing?

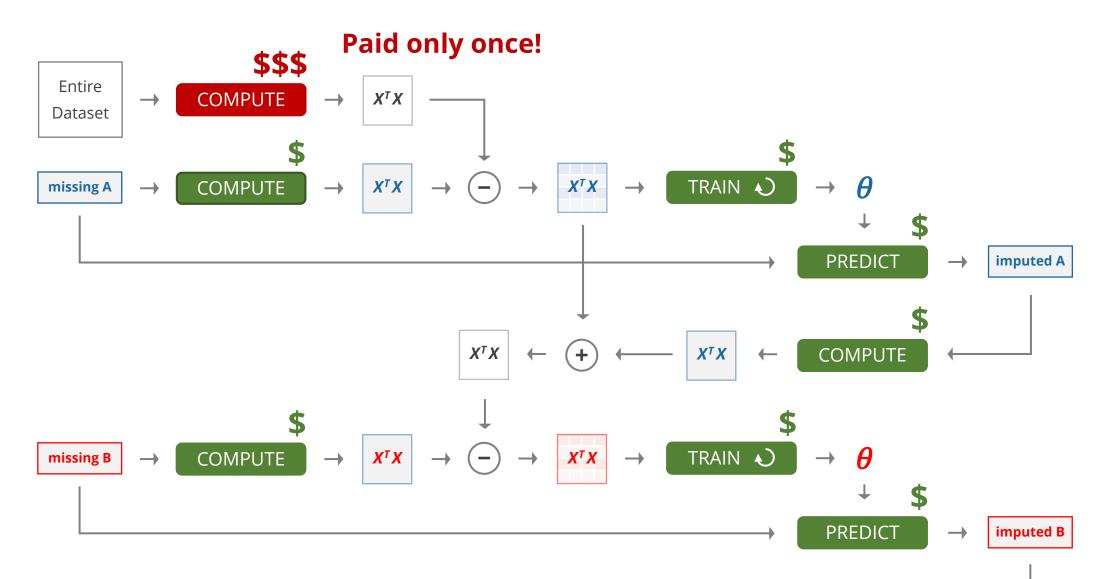
Step 2: Sharing Opportunities











MICE Implementation in PostgreSQL

CREATE TYPE cofactor

Parallel-safe operators +, -, *

Support for continuous & categorical attributes

Avoids one-hot encoding

Model training in UDFs

Linear regression and GDA

MICE driver in PL/pgSQL

Header
SUM(Xi*Xj)
SUM(Xi) GROUP BY Xj
SUM(1) GROUP BY Xi,Xj

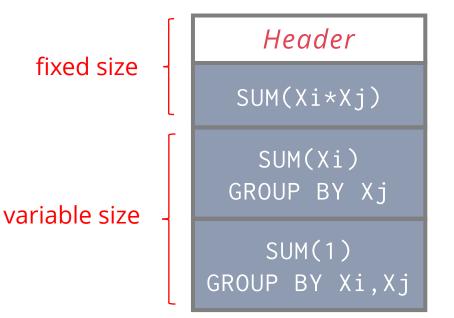
Memory representation of a ring value

Implementation Challenges

Flat representation in memory One contiguous memory chunk No pointers to the outside of allocated memory Max space for a * b is unknown beforehand

Solution:

Dry-run to compute max size of **a** * **b**



Memory representation of a ring value

Implementation Challenges (Cont.)

No automatic support for pushing SUM past joins **Solution:** rewrite/generate SQL queries to exploit factorization

Large UPDATE queries are **slow**

Ex: imputing 1M values of one attribute can take few hours

Solution: avoid in-place updates

Store imputed values in temporary tables

Recompute on-the-fly as (R LEFT OUTER JOIN temp)

Data imputation within a DBMS

Ring computation + factorization + sharing

Further room for improvements in dealing with categorical values

Using existing DBMSs for in-database ML?

Performance looks promising

Few quirks complicate implementation