<> Relational AI

RelationalAD

Mahmoud Abo Khamis

Curtin, Mathieu Huot

joint work with Hung Q. Ngo, Ryan

: o
relationalAl

What is RelAD?

RelAD: What is the Rel language?

Logic
Database queries
Linear algebra
- Tensor computation
Machine learning
- Feature extraction
- Modeling, inference, prediction...
Mathematical Optimization
Statistics
- Probabilistic programming

- See relational.ai

relationalAl

https://relational.ai/

relationalAl

RelAD: Rel Core Syntax

- A(vast) generalization of Datalog with agg/neg..
- ARel program is a collection of rules
- def QX Y, ..) =0, Y, ...)
- AFormula ¢(x, v, ...) defines a relation over vars {x, y, ...}
- Each formula @(x, v, ...) could be
- A materialized atom, e.g. R(X, V, ...)
- Anative,eg. X+ty=zorx>y
- A conjunction/disjunction of formulas, e.g. g, (x, ...) A U,(X, ...)
- Anegation, e.g. = V(X Y, ...)
- ForVv,eg 3z VXxV2z.)
- Asum/reduce, e.g. sum[z, t: (X, Z T, ..)I(Y)
- An FFl, e.g. some-external-function(y)
- See docs.relational.ai/rel/primer/basic-syntax

https://docs.relational.ai/rel/primer/basic-syntax

relationalAl

RelAD: Rel Examples

- Triangle counting in a graph E
def Q = count[a, b, c: E(a, b) and E(b, c) and E(c, a)]

- Matrix multiplication C' = AB
def C(i, j, v) = sum|[
k, vi, v2, v3: A(i, k, vl) and B(k, j, v2) and v1*v2=v3](v)
def C[i, j] = sum[k: A[i, k] * B[k, j]]

- J = | Az — b

def J = sum[i : (sum[7j : A[i, j] * x[j]] - b[i])"2]

relationalAl

RelAD: Differentiation (What We Learned in College)

b'X'X
0 X C—X(bcT +cb")
Olog |A|

0A
otr(BA)

DA
ob'X"DXc
0X
O(Xb+c)'D(Xb+ c)
0X

(A=)’

—B'

— D" Xbc' + DXeb!

= (D+D")(Xb+c)b'

relationalAl

RelAD: What is Differentiation Used For?

- Most of modern machine learning

- Traditional optimization

- Physics

relationalAl

RelAD: Automatic Differentiation

- Input: a computing a function f
- Output: a computing df

What is a program?

- Aneural network
- Imperative program in C++, Haskell, etc
- A I (even with recursion)

relationalAl

Some Existing AutoDiff Frameworks

- TensorFlow (autodiff)

- PyTorch (autograd)
- NumPy (JAX)

- Geno

They operate on Einsum notations to construct complex functions of tensors

https://www.tensorflow.org/guide/autodiff
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#
http://www.geno-project.org/

Digression: Einstein Notation

Existing AutoDiff frameworks operate on (network of) Einsum rules, e.g.
Ui ik = 21m Bigm + ik * Tigy
def U[i, j, k] = sum[1 m v : v = R[i,1,m] * S[]j,k,1] * T[i,k,1]]
(For a gentle intro, see “Einsum is all you need”)

Rel is much more general, e.g.
def U[i, j, k] = sum[l1 m v : v = R[i,1l,m] * S[j,k,1] * T[i,k,1] and
exists(x : i”"2 + x <= k and x > 10)

]

- Our keys are of arbitrary types

- Tensors can be (very) sparse

- Additional logic is arbitrary

- Worst-case optimal join + semantic optimization + VM

relationalAl

10

https://rockt.github.io/2018/04/30/einsum

relationalAl

RelAD: Relational AutoDiff

i € [n] j € |m]

Relational AutoDiff - rel_jacobian

x df, a Rel prog f'(x) | Sparse / Faqtorized Rep

i € [n] (k,0) € [m] x [n]

relationalAl

Why RelAD, not jJuliaAD?

Rel Prog

/ Core Rel Engine \

e Query Optimization
o Factorization

o Physical
o CSE T a
, o ptimize uery .
Rel’ Prog e Recursion Rel Prog Compiler Julia Prog
o Generalized |
Seminaive |
P L y
o Linear ' S
e IVM i JuliaAD !
e Task Parallelism 9]
o .. o
§ J |
Y I
We would lose these features!! smTT T T -

(plus RelAD self-loop)

relationalAl

RelAD: Example

Consider the Rel program

def J = sum[i j : x[i] * A[i, j] * x[]]1] J = :BTAQZ

We need to give an extra hint to specify how to interpret it as a

def V = jacobian[3J, x] VvV — 0J

ox

This says that

- the above program defines a function f:x — 3, and
- we are interested in ¥, which we now call V.

13

relationalAl

RelAD: Example (Cont.)

RelAD rewrites this program into
def 3 = sum[i j : x[i] * A[i, 3] * x[3]1] J =2l Ax

def V1[i]

sum[j v : x[i] = _ and v = A[i, j] * x[]j]] Vl = Ax

def V2[j]

sum[i v : v = x[i] * A[i, j] and x[j] = _] V2 — ATCE

def V[i] = merge sum[V1[i], V2[i]] V = Vl + V2

14

RelAD: Example (Cont.)

Now take this new program and add the hint
def H = jacobian[V, Xx]

The above says

- interpret the new program as another function
- compute g" which we now call H

_ v
H_aa:

:x— V,and

relationalAl

15

relationalAl

RelAD: Example (Cont.)

RelAD rewrites OV
def H = jacobian[V, x] H — %
into

def H1[i, j] = sum[v : x[i] = _and v = A[i, j] and x[j] = _] Hl — A
def H2[j, i] = sum[v : x[i] = _ and v = A[i, j] and x[j] = _] H2 — AT

def H[i, j] = merge_sum[H1[i, j], H2[i, j]1] H = Hl + H2

16

relationalAl

Interface: “jacobian” Higher-order Native

Given a Rel program P defining (among other things) two relations A and B where
Alk,, k,, ..., k_1=Vvhas m>=0 keys and one value v whose type is Float
- B[l L, ..., 1] =w has n>= 0 keys and one value w whose type is Float
- B may depend on A in any way: directly or indirectly through chains of other relations in P

We can use the higher-order native jacobian to define a new relation C
- def C =jacobian[B, A]
Clly, Ly eees 1, Ky Ky ey

Im] t has n+m keys and one value t whose type is Float
ci, L, ...l . k,k, ..k 1:= 0B[,L, .11 / oALk,, k,, ... k_]

m

RelAD later desugars jacobian into lower-order Rel

17

: o
relationalAl

Under the Hood

How Do We Do It?

18

relationalAl

How does it work?

To derive a single SumProductNode (SPN) s, we

- analyze dependencies among atoms of s
- construct a dependency DAG
- do backpropagation

Example:

def J = sum[i j : x[i] * A[i,] * x[]j]]

J =z Ax

def V = jacobian[J, x] | xil=v1 | (Al jl=v2 | | xil=v3 |
v =9 9J_ax[i] += Ali,j] * x[] 8J_ax[i] += x[] * Al]]

ox

19

How does it work?

To derive an entire Rel program P consisting of many SPNs, we

- analyze dependencies among SPNs of P
- construct a dependency DAG
- do backpropagation

More generally, Jacobian accumulation

relationalAl

20

: o
relationalAl

More Examples

In ML

21

More Matrix Calculus Examples

From our test suite:

V(Bx+b)'C(Dx+d)=B'C(Dx+d)+D'C'(Bx+b)
ob' X' Xec
0X
otr(BA)
0A

Ob' X" DXc

0X
O(Xb+c)'D(Xb+c)

0X

= X (be" +cb)
— BT

— D' Xbe' + DXceb'

=(D+D")(Xb+c)b'

relationalAl

22

More Matrix Calculus Examples

RelAD can now mimic matrixcalculus.org
We just need to a translator from Latex to Rel
and another one from Rel to Latex

f = sum(log(exp((—y) ® (X - w)) + vector(1)))

matmxcHlus org
of

X = QY@ (vector(l) +t0) - w'
to = exp(—y © (X - w))

relationalAl

23

http://www.matrixcalculus.org/
http://www.matrixcalculus.org/

Latex = Rel (currently missing)

f= sum(log(exp((—y) ® (X . w)) + Vector(l)))

Y

def z[i] = sum[]j : -y[i] * X[i, J] * w[]]]
def f = sum[i : natural log[natural exp[z[i]] + 1.0]]
def V = jacobian[f, X]

relationalAl

24

Rel = Rel

(RelAD)

def z[i] = sum[j : -y[i] * X[i, F] * w[j]]

def £ = sum[i :

natural log[natural exp[z[i]] + 1.0]]

def V = jacobian[f, X]

def V[i, j]
def of 9z[i]

@

v : X[i, j] = _and v = -y[i] * w[]j] * of oz[i]
natural_exp[z[i]] / (natural _exp[z[i]] + 1)

relationalAl

25

Rel = Latex (currently missing)

def VI[i, j]
def of odz[i]

v : X[i, j] = _and v = -y[i] * w[j] * of oz[i]
natural exp[z[i]] / (natural_exp[z[i]] + 1)

4

(w2,
V=—(yo Bz)w

% = exp(z) @ (exp(z) + vector(1))

relationalAl

26

relationalAl

ML Example: Multi-layer Neural Network

Consider a neural network with two layers, RelLU activations, and multiple outputs:

- Xis the input vector, t is the target vector
- W, is the weight matrix for the 1st layer
- W, is the weight matrix for the 2nd layer

- Recall ReLU(z) := max(z,0)
The network works as follows:

y1 = Wiz
z1 = ReLU(y)
yo = Wazg

zo = ReLU(y»)
J = |t — 2|3

27

relationalAl

ML Example: Multi-layer Neural Network (cont.)

Input Rel Program: zp = ReLU(y2)
yl — Wlx def z2(i, v) = y2[i] = v and v >= 0
def y1[i] = sum[j : Wi[i, j] * x[j]] def z2(i, v)=exists(u : y2[i]=u and u<®@ and v=0)

_ . 2
2 = ReLU(y1) J =t — 223

def z1(i, v) = y1[i] = v and v >= © def J = sum[i : (t[i] - z2[i]) "~ 2]
def z1(i, v)=exists(u : yl[i]=u and u<®@ and v=0) 97
Vi = g5
Yo = szl def V_W1 = jacobian[J, W1]
def y2[i] = sum[]j : W2[i, j] * z1[]]] aJ
Ve = -
Wo

def V_W2 = jacobian[J, W2]

relationalAl

ML Example: Multi-layer Neural Network (cont.)

RelAD output:

def 93_0z2[i] = 2 * (z2[i] - t[i]) g—i = 2(22 — t)
: : . 0J
def 93_oy2 = 1 y2 =0 and 9dJ_o0z2 = —
ef 93_dy2[i] = sum[v: y2[i] >=0 an _0z2[i] = v] P, 82'2 ®]-y2>0
d T . S N P . oJ T
ef V_W2[i, j] = sum[v: W2[i, j] = _ and v = 9J_dy2[i] * z1[j]] VW2 = o
Y2
def 93 _0z1[j] = sum[i v: z1[j] = _ and v = W2[i, j] * 93_ody2[i]] g—‘] — zTg—J
Z1 Y2
: : : o.J
def 9] _oy1[i] = sum[v: yl[i] >=0 and 9] _0z1[i] = V] —
9y, aZ1 © 1y1>0
o Co : : __0oJ . T
def V_Wi[i, j] = sum[v: W1[i, j] = _ and v = 93 _oy1[i] * x[j]] VWl = —X

29

Recursive Example

9 log(| det(A)|) _
: DA = (A7)"

- The determinant is not directly available in Rel
- But it can be computed recursively using a Gram-Schmidt process

relationalAl

30

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

relationalAl

Recursive Example: (cont.)

- Givenan(nXn)}-matrix A=[A, A, ... Al
- Compute orthogonal vectors O = [O,, O,, .., O]

A5 Oy
10k 113

Oj — AJ‘ - Zk<j k
def 0(i, j, v) = (j =1 and v = A[i, 1])
def 0(i, j, v) = (v = A[i, j] - sum[k s :
k < j and s = prod A O[j, k] / sgr_norm _O[k] * O[i, k]])
def prod A O[], k] = sum[1l : A[1l, j] * O[1l, k]]
def sqr_norm O[k] = sum[1l : O[1l, k] * 2]

Recursive Example: (cont.)

By determinant properties, det(A) — det(O)
Because O is an orthogonal basis

| det(O)| = [[O1]]y x [|Oa]ly x -+ < |[Onll
log | det(O)| = log [|O1]|, +10g[|O2|], 4 - - - +1og[|On|],

def log det = sum[k : natural_log[sqr_norm O[k]] / 2]
def V = jacobian[log det, A]

relationalAl

32

: o
relationalAl

RelAD and Optimization

Optimization with Rel stdlib?

KK}

relationalAl

Example: Linear regression with Gradient-descent

- Input
(Nxd)-matrix X where each row is a data point
N-vector t of corresponding target responses
- Output
d-vector w" of optimal model parameters

w* = argmin, || Xw — t||3

34

relationalAl

Example: Linear regression with Gradient-descent

def MAX K = 10000 // maximum number of iterations
def a = 90.01 // learning rate (fixed)
def w(k, i, v) = k = @ and range(1, d, 1, i) and v = 0.0

def

def

def

def

ylk, i] = sum[j : X[1i, J] * w[k, j]]

I[k] = sum[i : (y[k, i] - t[i]) ~ 2]

V = jacobian[3J, w]

w(k, i, v) = k <= MAX K and
v = w[k-1, i] - a * V[k-1, k-1, i]

wy < 0
Y < X’wk
Je < llyr — t]I3

OJy.

Vk <— 8wk

Wy — Wi—1 — AV _1

35

Open Issues

relationalAl
BE B
H B N
| | | |
]
|] ||
-]
B
|] |
B

36

relationalAl

Incorporating ICs: Key alignment

Consider the program

def J = sum[i : b[i] * x[1]] J=>blz
def V = jacobian[J, x] v =29 _y
or

Currently RelAD produces the following rule for V:
def V[i] = v : v = b[i] and x[1] = _
The extra part is due to the fact that RelAD doesn't know that the keys of b and x are
aligned
- Even if there was an IC saying they are, our RelAD currently has no mechanism to
utilize it

37

relationalAl

Incorporating ICs: Matrix Symmetry

Consider the example from before

def J = sum[i j : x[1] * A[i, j] * x[j]] J =12l Ar
If A was symmetric, then

V = 2Ax

However currently our RelAD output has no mechanism to utilize this symmetry (even if it
was encoded as an Q)

def V1[i] = sum[]j v : x[i] = _ and v = A[1i, j] * x[]j]] Vl — Az

def V2[j] = sum[i v : v = x[i] * A[i, j] and x[j] = _] VYV, = AT o

def V[i] = merge_sum[V1[i], V2[i]] V = Vl + Vz

38

relationalAl

Multi-headed Rules

Consider the example
// J = xX'AX
def J = sum[i j : x[1i] * A[i, j] * x[7]]
def V = jacobian[J, x]
Instead of having two rules for V
VI[i] += A[i, J] * x[]]
VI[j] += A[i, J] * x[i]
it is faster to have one with two heads
VI[i] += v2*v3, V[j] + = vi*v2 « x[i] = v1, A[i, j] = v2, x[]j] = v3

Other Issues

- Usage

- Integration with ML work

- Integration into existential second order (ESO) work (for optimization)
- Performance

- Dense-tensor support

- Mapping to BLAS / GPUs / ...

- XY-Stratification to speed up GD (Joint work with Amir Shaikhha)

relationalAl

40

: o
relationalAl

What's Out There

relationalAl

Some References

- Naumann, Uwe (April 2008). "Optimal Jacobian accumulation is NP-complete".
Mathematical Programming. 112 (2): 427-441.

- Baydin, Atilim Gunes; Pearlmutter, Barak; Radul, Alexey Andreyevich; Siskind, Jeffrey
(2018). "Automatic differentiation in machine learning: a survey". Journal of Machine
Learning Research. 18: 1-43.

- Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. GENO -- GENeric
Optimization for Classical Machine Learning, NeurlPS 2019.

- Soren Laue, Matthias Mitterreiter, Joachim Giesen: A Simple and Efficient Tensor
Calculus. AAAI 2020: 4527-4534

42

https://dl.acm.org/doi/10.5555/3114201.3114717
https://dl.acm.org/doi/abs/10.5555/3122009.3242010
https://papers.nips.cc/paper/8491-geno-generic-optimization-for-classical-machine-learning.pdf
https://papers.nips.cc/paper/8491-geno-generic-optimization-for-classical-machine-learning.pdf
https://arxiv.org/abs/2010.03313
https://arxiv.org/abs/2010.03313

<> Relational AI

Thank You!

Any Questions/Comments?

