

RelationalAD

Mahmoud Abo Khamis joint work with Hung Q. Ngo, Ryan Curtin, Mathieu Huot

.

RelAD: What is the Rel language?

- Declarative				
- Multipurpose				
- Logic				
- Database queries				
- Linear algebra				1
- Tensor computation				
- Machine learning				
- Feature extraction				
- Modeling, inference, prediction				
- Mathematical Optimization				
- Statistics				
 Probabilistic programming 				
- See <u>relational.ai</u>				
			3	

RelAD: Rel Core Syntax

- A (vast) generalization of <i>Datalog</i> with agg/neg	
- A Rel program is a collection of rules	
$-$ def Q(x, y,) = $\phi(x, y,)$	
- A Formula φ(x , y,) defines a <i>relation</i> over vars {x, y,}	
- Each formula $\varphi(x, y,)$ could be	
- A materialized atom, e.g. R(x, y,)	
- A native, e.g. $x + y = z$ or $x > y$	
- A conjunction/disjunction of formulas, e.g. $\psi_1(x,) \wedge \psi_2(x,)$	(2000)
- A negation, e.g. $\neg \psi(x, y,)$	
- ∃ or ∀, e.g. ∃ z : ψ(x, y, z,)	
- A sum/reduce, e.g. sum[z, t: ψ (x, z, t,)](y)	
- An FFI, e.g. some-external-function(ψ)	
See <u>docs.relational.ai/rel/primer/basic-syntax</u>	
	4

Rel<mark>AD: Rel Examples</mark>

Triangle counting in a graph E def Q = count[a, b, c: E(a, b) and E(b, c) and E(c, a)] Matrix multiplication C = ABdef C(i, j, v) = sum[k, v1, v2, v3: A(i, k, v1) and B(k, j, v2) and v1*v2=v3](v) def C[i, j] = sum[k: A[i, k] * B[k, j]] $J = \|Ax - b\|_2^2$ def J = sum[i : (sum[j : A[i, j] * x[j]] - b[i])^2] 5

RelAD: Differentiation (What We Learned in College)

$$egin{aligned} &rac{\partial eta^ op X^ op X eta c}{\partial X} = X(eta c^ op + eta b^ op) \ &rac{\partial \log |A|}{\partial A} = (A^{-1})^ op \ &rac{\partial \log |A|}{\partial A} = (A^{-1})^ op \ &rac{\partial \operatorname{tr}(BA)}{\partial A} = B^ op \ &rac{\partial eta^ op X^ op D X eta c}{\partial X} = D^ op X eta c^ op + D X eta b^ op \ &rac{\partial (Xb+c)^ op D (Xb+c)}{\partial X} = (D+D^ op) (Xb+c) b^ op \end{aligned}$$

RelAD: What is Differentiation Used For?

- Most of modern machine learning

- Traditional optimization

Rel<mark>AD</mark>: Automatic Differentiation

- Input: a **program** computing a function *f*
- Output: a **program** computing *df*

What is a program?

- A neural network
- Imperative program in C++, Haskell, etc
- A **Rel program**! (even with recursion)

101

Some Existing AutoDiff Frameworks

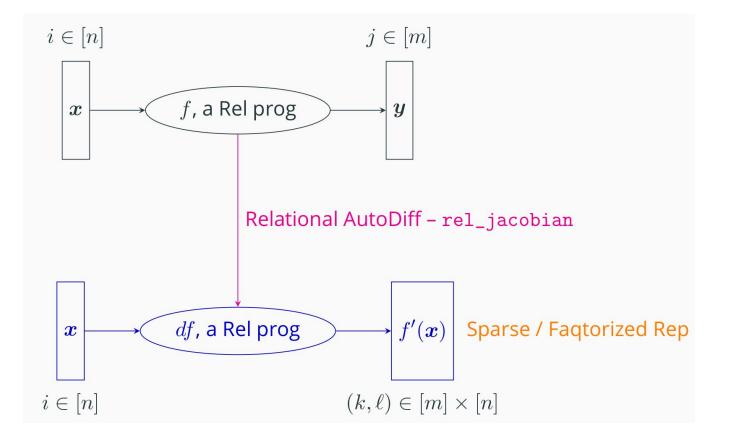
Tapcar Flow (autodiff)	
- TensorFlow (<u>autodiff</u>)	
- PyTorch (<u>autograd</u>)	
- Tyrorch (<u>autograu</u>)	
- NumPy (<u>IAX</u>)	
- <u>Geno</u>	
They operate on Einsum notations to construct complex functions of tensors	
They operate of Ensuin notations to construct complex functions of tensors	

10

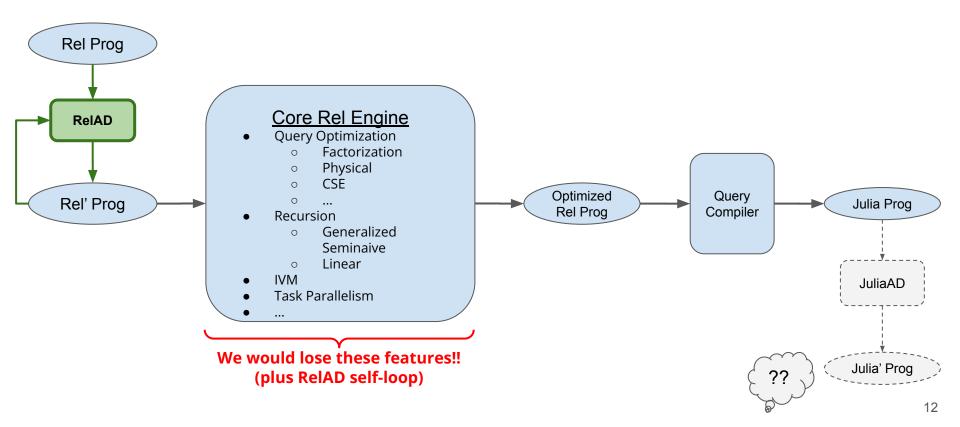
Digression: Einstein Notation

Existing AutoDiff frameworks operate on (network of) *Einsum rules*, e.g. $U_{i,j,k} = \sum_{l.m} R_{i,l,m} \cdot S_{j,k,l} \cdot T_{i,k,l}$ def U[i, j, k] = sum[1 m v : v = R[i,1,m] * S[j,k,1] * T[i,k,1]] (For a gentle intro, see "<u>Einsum is all you need</u>") Rel is **much** more general, e.g. def U[i, j, k] = sum[1 m v : v = R[i,1,m] * S[j,k,1] * T[i,k,1] and $exists(x : i^2 + x \le k and x > 10)$ • • • • • Our keys are of arbitrary types - Tensors can be (very) sparse - Additional logic is arbitrary - Worst-case optimal join + semantic optimization + IVM

RelAD: Relational AutoDiff



Why RelAD, not JuliaAD?



RelAD: Example

```
Consider the Rel program
                                                                     J = x^T A x^{-1}
        def J = sum[i j : x[i] * A[i, j] * x[j]]
   We need to give an extra hint to specify how to interpret it as a function

abla = rac{\partial J}{\partial x}
         def \nabla = jacobian[J, x]
   This says that
     - the above program defines a function f: x \rightarrow J, and
                                                                                               • • we are interested in f', which we now call \nabla.
```


RelAD: Example (Cont.)

```
RelAD rewrites this program into
                                                                           J = x^T A \overline{x} .
def J = sum[i j : x[i] * A[i, j] * x[j]]

abla_1 = Ax
def \nabla 1[i] = sum[j v : x[i] = and v = A[i, j] * x[j]]

abla_2 = A^T x^{-1}
def \nabla 2[j] = sum[i v : v = x[i] * A[i, j] and x[j] = ]
                                                                 \nabla = \nabla_1 + \nabla_2
def \nabla[i] = merge sum[\nabla1[i], \nabla2[i]]
                                                                                     14
```


RelAD: Example (Cont.)

Now take this new program and add the hint

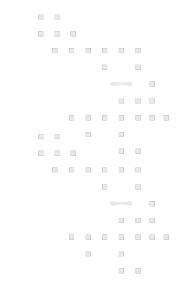
```
def H = jacobian[\nabla, x]
```

The above says

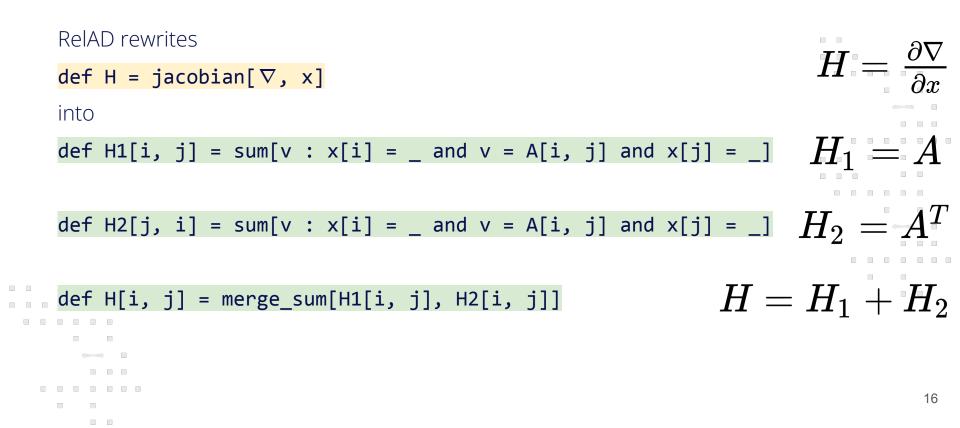
- interpret the new program as another function $g: x \rightarrow \nabla$, and

 $H = \frac{\partial \nabla}{\partial x}$

- compute g' which we now call H



RelAD: Example (Cont.)



Interface: "jacobian" Higher-order Native

- Given a Rel program P defining (among other things) two relations A and B where
 - A[k₁, k₂, ..., k_m] = v has m >= 0 keys and one value v whose type is Float
 - **B**[**I**₁, **I**₂, ..., **I**_n] = **w** has **n** >= **0** keys and one value **w** whose type is **Float**
 - **B** may depend on **A** in any way: directly or indirectly through chains of other relations in **P**
- We can use the higher-order native **jacobian** to define a new relation **C**
 - def C = jacobian[B, A]

- C[l₁, l₂, ..., l_n, k₁, k₂, ..., k_m] = t has n+m keys and one value t whose type is Float
- $C[l_1, l_2, ..., l_n, k_1, k_2, ..., k_m] := \partial B[l_1, l_2, ..., l_n] / \partial A[k_1, k_2, ..., k_m]$

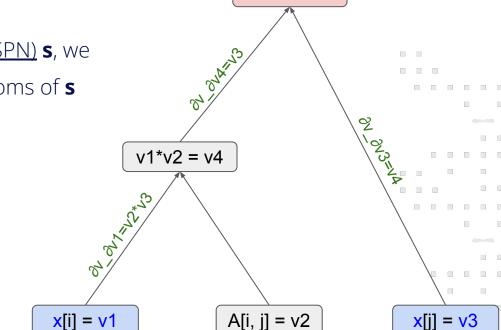
```
- RelAD later desugars jacobian into lower-order Rel
```


relational<u>A</u>

How does it work?

To derive <u>a single SumProductNode (SPN)</u> **s**, we

- analyze dependencies among atoms of s
- construct a dependency DAG
- do backpropagation



 $\partial J \partial x[i] += A[i,j] * x[j]$

v4*v3 = v

Example:

def J = sum[i j : x[i] * A[i, j] * x[j]] $J = x^T A x$ def ∇ = jacobian[J, x] $\nabla = \frac{\partial J}{\partial x}$



How does it work?

To derive <u>an entire Rel program</u> P consisting of many SPNs, we	
 analyze dependencies among SPNs of P 	
 construct a dependency DAG 	(an-ra)
- do backpropagation	
- More generally, Jacobian accumulation	
	20

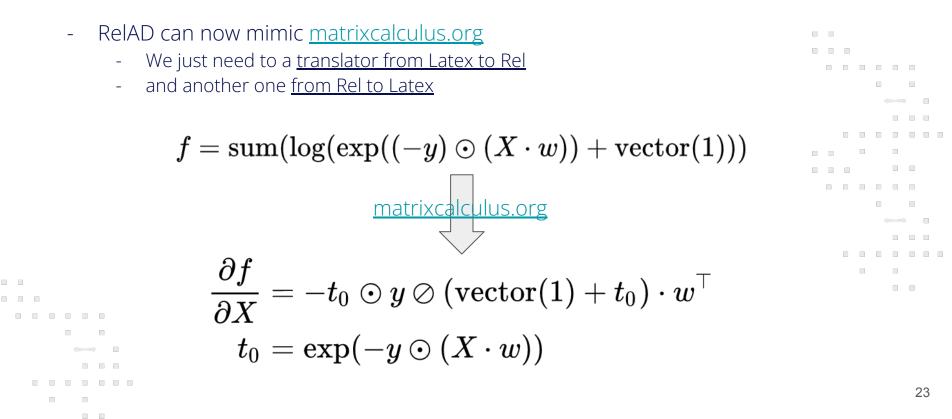
(2000)

More Matrix Calculus Examples

From our test suite:

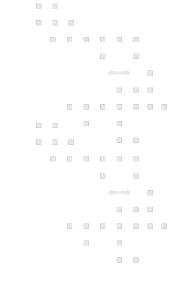
$$\nabla (Bx+b)^{\top} C(Dx+d) = B^{\top} C(Dx+d) + D^{\top} C^{\top} (Bx+b)$$
$$\frac{\partial b^{\top} X^{\top} X c}{\partial X} = X(bc^{\top} + cb^{\top})$$
$$\frac{\partial \operatorname{tr}(BA)}{\partial A} = B^{\top}$$
$$\frac{\partial b^{\top} X^{\top} DX c}{\partial X} = D^{\top} X bc^{\top} + DX cb^{\top}$$
$$\frac{\partial (Xb+c)^{\top} D(Xb+c)}{\partial X} = (D+D^{\top})(Xb+c)b^{\top}$$

More Matrix Calculus Examples



Latex \Rightarrow **Rel** (currently missing)

 $f = \mathrm{sum}(\log(\exp((-y)\odot(X\cdot w)) + \mathrm{vector}(1)))$



```
def z[i] = sum[j : -y[i] * X[i, j] * w[j]]
  def f = sum[i : natural_log[natural_exp[z[i]] + 1.0]]
  def ∇ = jacobian[f, X]
```


$\mathbf{Rel} \Rightarrow \mathbf{Rel} \qquad (\mathbf{RelAD})$

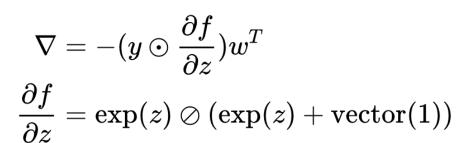
def z[i] = sum[j : -y[i] * X[i, j] * w[j]]def f = sum[i : natural_log[natural_exp[z[i]] + 1.0]] def ∇ = jacobian[f, X]

def ∇ [i, j] = v : X[i, j] = _ and v = -y[i] * w[j] * ∂ f_ ∂ z[i] def ∂ f_ ∂ z[i] = natural_exp[z[i]] / (natural_exp[z[i]] + 1)

RelAD

Rel \Rightarrow **Latex** (currently missing)

def ∇ [i, j] = v : X[i, j] = _ and v = -y[i] * w[j] * ∂ f_ ∂ z[i] def ∂ f_ ∂ z[i] = natural_exp[z[i]] / (natural_exp[z[i]] + 1)



ML Example: Multi-layer Neural Network

Consider a neural network with two layers, ReLU activations, and multiple outputs:

-	old x is the input vector,	t is the target vector		_	
-	W_1 is the weight matrix for th	ne 1st layer			
	W, is the weight matrix for th				
	Recall $\operatorname{ReLU}(x) := \max(x)$				
		, •)			
Th	e network works as follows:	$y_1=W_1x$			
		$z_1 = \operatorname{ReLU}(y_1)$			
		$y_2=W_2z_1$			
		$z_2 = \operatorname{ReLU}(y_2)$			
		$J = \ t - z_2\ _2^2$			
				2	27
				_	

ML Example: Multi-layer Neural Network (cont.)

Input Rel Program: $y_1 = W_1 x$ def y1[i] = sum[j : W1[i, j] * x[j]]

 $z_1 = \operatorname{ReLU}(y_1)$ def z1(i, v) = y1[i] = v and v >= 0 def z1(i, v)=exists(u : y1[i]=u and u<0 and v=0)

 $y_2 = W_2 z_1$ def y2[i] = sum[j : W2[i, j] * z1[j]]

 $z_2 = \operatorname{ReLU}(y_2)$ def z2(i, v) = y2[i] = v and v >= 0 def z2(i, v)=exists(u : y2[i]=u and u<0 and v=0)</pre> $J = \|t - z_2\|_2^2$ def J = sum[i : (t[i] - z2[i]) ^ 2] $\nabla_{W1} = \frac{\partial J}{\partial W_1}$ def ▽ W1 = jacobian[J, W1] $\nabla_{W2} = \frac{\partial J}{\partial W_2}$ def ∇ W2 = jacobian[J, W2]

ML Example: Multi-layer Neural Network (cont.)

RelAD output:

 $rac{\partial J}{\partial z_2}=2(z_2-t)$ def $\partial J \partial z^{[i]} = 2 * (z^{[i]} - t^{[i]})$ $rac{\partial J}{\partial y_2} = rac{\partial J}{\partial z_2} \odot 1_{y_2 \geq 0}$ def $\partial J \partial y_2[i] = sum[v: y_2[i] >= 0 and <math>\partial J \partial z_2[i] = v]$ $abla_{W2} = rac{\partial J}{\partial u_2} z_1^T$ def $\nabla_W2[i, j] = sum[v: W2[i, j] = _ and v = \partial J_\partial y2[i] * z1[j]]$ $rac{\partial J}{\partial z_1} = W_2^T rac{\partial J}{\partial y_2}$ def $\partial J_{\partial z1[j]} = sum[i v: z1[j] = _ and v = W2[i, j] * <math>\partial J_{\partial y2[i]}$ $rac{\partial J}{\partial y_1} = rac{\partial J}{\partial z_1} \odot 1_{y_1 \geq 0}$. def $\partial J_{\partial y1}[i] = sum[v: y1[i] >= 0 and <math>\partial J_{\partial z1}[i] = v$] $abla_{W1} = rac{\partial J}{\partial u_1} x^T$ def $\nabla_W1[i, j] = sum[v: W1[i, j] = _ and v = \partial_J_\partial y1[i] * x[j]]$ 29

Recursive Example

$$rac{\partial \log(|\det(A)|)}{\partial A} = (A^{-1})^T$$

- The determinant is not directly available in Rel
- But it can be computed **recursively** using a Gram-Schmidt process



Recursive Example: (cont.)

- Given an (n X n)-matrix A = [A₁, A₂, ..., A_n]
- Compute orthogonal vectors O = [O₁, O₂, ..., O_n]

$$O_j = A_j - \sum_{k < j} \frac{A_j^T O_k}{||O_k||_2^2} O_k$$
def O(i, j, v) = (j = 1 and v = A[i, 1])
def O(i, j, v) = (v = A[i, j] - sum[k s :
k < j and s = prod_A_0[j, k] / sqr_norm_0[k] * 0[i, k]])
def prod_A_0[j, k] = sum[1 : A[1, j] * 0[1, k]]
def sqr_norm_0[k] = sum[1 : 0[1, k] ^ 2]

Recursive Example: (cont.)

- By determinant properties, det(A) = det(O)
- Because O is an orthogonal basis

$$|\det(O)| = ||O_1||_2 imes ||O_2||_2 imes \cdots imes ||O_n||_2$$

 $\log |\det(O)| = \log ||O_1||_2 + \log ||O_2||_2 + \cdots + \log ||O_n||_2$

def log_det = sum[k : natural_log[sqr_norm_0[k]] / 2]
def ∇ = jacobian[log_det, A]

Example: Linear regression with Gradient-descent

 Input (N×d)-matrix X where each row is a data point 			
- N-vector t of corresponding target responses			
		(j	
- Output			
- d-vector w [*] of optimal model parameters			
$w^* = \mathrm{argmin}_w \ Xw - t\ _2^2$			
w = g = w = w = v = v = 2			
	_		
		_	
			34

Example: Linear regression with Gradient-descent

```
def MAX K = 10000
                        // maximum number of iterations
     def \alpha = 0.01 // learning rate (fixed)
                                                                          w_0 \leftarrow 0
     def w(k, i, v) = k = 0 and range(1, d, 1, i) and v = 0.0
                                                                        y_k \leftarrow X w_k
     def y[k, i] = sum[j : X[i, j] * w[k, j]]
                                                                                           J_k \leftarrow \|y_k - t\|_2^2
     def J[k] = sum[i : (y[k, i] - t[i]) ^ 2]

abla_k \leftarrow rac{\partial J_k}{\partial w_k}
     def \nabla = jacobian[J, w]
                                                                                                    def w(k, i, v) = k <= MAX K and
                                                                    w_k \leftarrow w_{k-1} - lpha 
abla_{k-1}
   v = w[k-1, i] - \alpha * \nabla[k-1, k-1, i]
                                                                                                       35
     101
```


. . .

Incorporating ICs: Key alignment

Consider the program		
def J = sum[i : b[i] * x[i]] $J = b^T x$		
def ∇ = jacobian[J, x] $\nabla - \frac{\partial J}{\partial J} - h$		
def $ abla$ = jacobian[], x] $ abla = b$		
Currently ReIAD produces the following rule for $ abla$:		
def ∇ [i] = v : v = b[i] and x[i] = _		
The extra part is due to the fact that ReIAD doesn't know that the keys of b an aligned	d x are	
 Even if there was an IC saying they are, our RelAD currently has no mecha utilize it 	nism to	
		37

Incorporating ICs: Matrix Symmetry

Consider the example from before

$$\begin{aligned}
\text{def J = sum[i j : x[i] * A[i, j] * x[j]} & J = x^T A x \\
\text{If A was symmetric, then} & \nabla = 2Ax
\end{aligned}$$
However currently our RelAD output has no mechanism to utilize this symmetry (even if it was encoded as an IC)

$$\begin{aligned}
\text{def } \nabla 1[i] = \text{sum[j } v : x[i] = _ \text{and } v = A[i, j] * x[j]] & \nabla_1 = Ax \\
\text{def } \nabla 2[j] = \text{sum[i } v : v = x[i] * A[i, j] \text{ and } x[j] = _] & \nabla_2 = A^T x \\
\text{def } \nabla [i] = \text{merge}_{\text{sum}} [\nabla 1[i], \nabla 2[i]] & \nabla = \nabla_1 + \nabla_2
\end{aligned}$$

Multi-headed Rules

Consider the example	
$// J = x^{T}Ax$	
def J = sum[i j : x[i] * A[i, j] * x[j]]	
def ∇ = jacobian[J, x]	
Instead of having two rules for $ abla$	
∇ [i] += A[i, j] * x[j]	
∇ [j] += A[i, j] * x[i]	
it is faster to have one with two heads	
∇ [i] += v2*v3, ∇ [j] + = v1*v2 \leftarrow x[i] = v1, A[i, j] = v2, x[j]	= v3
	39

Other Issues

-	Usage				
	- Integration with ML work				
	 Integration into existential second order (ESO) work (for optimization) 				
-	Performance				
	- Dense-tensor support				
	- Mapping to BLAS / GPUs /				
	- XY-Stratification to speed up GD (Joint work with Amir Shaikhha)				
				0	

Some References

- Naumann, Uwe (April 2008). "<u>Optimal Jacobian accumulation is NP-complete</u>".
 Mathematical Programming. 112 (2): 427–441.
- Baydin, Atilim Gunes; Pearlmutter, Barak; Radul, Alexey Andreyevich; Siskind, Jeffrey (2018). "<u>Automatic differentiation in machine learning: a survey</u>". Journal of Machine Learning Research. 18: 1–43.
- Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. <u>GENO -- GENeric</u>
 <u>Optimization for Classical Machine Learning</u>, NeurIPS 2019.
- Sören Laue, Matthias Mitterreiter, Joachim Giesen: <u>A Simple and Efficient Tensor</u> <u>Calculus</u>. AAAI 2020: 4527-4534

Thank You!

Any Questions/Comments?

