
1

RelationalAD

Mahmoud Abo Khamis
joint work with Hung Q. Ngo, Ryan Curtin, Mathieu Huot

2

What is RelAD?

RelAD: What is the Rel language?

- Declarative
- Multipurpose

- Logic
- Database queries
- Linear algebra

- Tensor computation
- Machine learning

- Feature extraction
- Modeling, inference, prediction…

- Mathematical Optimization
- Statistics

- Probabilistic programming
- …

- See relational.ai
3

https://relational.ai/

RelAD: Rel Core Syntax

- A (vast) generalization of Datalog with agg/neg..
- A Rel program is a collection of rules

- def Q(x, y, ...) = φ(x , y, ...)
- A Formula φ(x , y, ...) defines a relation over vars {x, y, …}
- Each formula φ(x , y, ...) could be

- A materialized atom, e.g. R(x, y, …)
- A native, e.g. x + y = z or x > y
- A conjunction/disjunction of formulas, e.g. ψ1(x, …) ∧ ψ2(x, …)
- A negation, e.g. ¬ ψ(x, y, …)
- ∃ or ∀ , e.g. ∃ z : ψ(x, y, z, …)
- A sum/reduce, e.g. sum[z, t: ψ (x, z, t, …)](y)
- An FFI, e.g. some-external-function(ψ)

- See docs.relational.ai/rel/primer/basic-syntax

4

https://docs.relational.ai/rel/primer/basic-syntax

RelAD: Rel Examples

- Triangle counting in a graph E
def Q = count[a, b, c: E(a, b) and E(b, c) and E(c, a)]

- Matrix multiplication
def C(i, j, v) = sum[

k, v1, v2, v3: A(i, k, v1) and B(k, j, v2) and v1*v2=v3](v)

def C[i, j] = sum[k: A[i, k] * B[k, j]]

-
def J = sum[i : (sum[j : A[i, j] * x[j]] - b[i])^2]

5

6

RelAD: Differentiation (What We Learned in College)

RelAD: What is Differentiation Used For?

- Most of modern machine learning

- Traditional optimization

- Physics

7

RelAD: Automatic Differentiation

- Input: a program computing a function f
- Output: a program computing df

What is a program?

- A neural network
- Imperative program in C++, Haskell, etc
- A Rel program! (even with recursion)

8

Some Existing AutoDiff Frameworks

- TensorFlow (autodiff)
- PyTorch (autograd)
- NumPy (JAX)
- Geno

They operate on Einsum notations to construct complex functions of tensors

9

https://www.tensorflow.org/guide/autodiff
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html#
http://www.geno-project.org/

Digression: Einstein Notation

Existing AutoDiff frameworks operate on (network of) Einsum rules, e.g.

def U[i, j, k] = sum[l m v : v = R[i,l,m] * S[j,k,l] * T[i,k,l]]

(For a gentle intro, see “Einsum is all you need”)

Rel is much more general, e.g.
def U[i, j, k] = sum[l m v : v = R[i,l,m] * S[j,k,l] * T[i,k,l] and

 exists(x : i^2 + x <= k and x > 10)

]

- Our keys are of arbitrary types
- Tensors can be (very) sparse
- Additional logic is arbitrary
- Worst-case optimal join + semantic optimization + IVM 10

https://rockt.github.io/2018/04/30/einsum

11

RelAD: Relational AutoDiff

12

Why RelAD, not JuliaAD?

Julia Prog

Core Rel Engine
● Query Optimization

○ Factorization
○ Physical
○ CSE
○ …

● Recursion
○ Generalized

Seminaive
○ Linear

● IVM
● Task Parallelism
● …

Optimized
Rel Prog

Query
CompilerRel’ Prog

JuliaAD

Rel Prog

RelAD

?? Julia’ Prog
We would lose these features!!

(plus RelAD self-loop)

RelAD: Example

Consider the Rel program

def J = sum[i j : x[i] * A[i, j] * x[j]]

We need to give an extra hint to specify how to interpret it as a function

def ∇ = jacobian[J, x]

This says that

- the above program defines a function f:x → J, and
- we are interested in f’, which we now call ∇.

13

RelAD: Example (Cont.)

RelAD rewrites this program into

def J = sum[i j : x[i] * A[i, j] * x[j]]

def ∇1[i] = sum[j v : x[i] = _ and v = A[i, j] * x[j]]

def ∇2[j] = sum[i v : v = x[i] * A[i, j] and x[j] = _]

def ∇[i] = merge_sum[∇1[i], ∇2[i]]

14

RelAD: Example (Cont.)

Now take this new program and add the hint

def H = jacobian[∇, x]

The above says

- interpret the new program as another function g:x→ ∇, and
- compute g’ which we now call H

15

RelAD: Example (Cont.)

RelAD rewrites

def H = jacobian[∇, x]

into

def H1[i, j] = sum[v : x[i] = _ and v = A[i, j] and x[j] = _]

def H2[j, i] = sum[v : x[i] = _ and v = A[i, j] and x[j] = _]

def H[i, j] = merge_sum[H1[i, j], H2[i, j]]

16

Interface: “jacobian” Higher-order Native

17

- Given a Rel program P defining (among other things) two relations A and B where
- A[k1, k2, …, km] = v has m >= 0 keys and one value v whose type is Float
- B[l1, l2, …, ln] = w has n >= 0 keys and one value w whose type is Float
- B may depend on A in any way: directly or indirectly through chains of other relations in P

- We can use the higher-order native jacobian to define a new relation C
- def C = jacobian[B, A]
- C[l1, l2, …, ln, k1, k2, …, km] = t has n+m keys and one value t whose type is Float
- C[l1, l2, …, ln, k1, k2, …, km] := ∂B[l1, l2, …, ln] / ∂A[k1, k2, …, km]

- RelAD later desugars jacobian into lower-order Rel

18

Under the Hood

How Do We Do It?

How does it work?

To derive a single SumProductNode (SPN) s, we

- analyze dependencies among atoms of s
- construct a dependency DAG
- do backpropagation

19

x[i] = v1 x[j] = v3A[i, j] = v2

v1*v2 = v4

v4*v3 = v

Example:
def J = sum[i j : x[i] * A[i, j] * x[j]]

def ∇ = jacobian[J, x]

∂v_∂v3=v4

∂v
_∂

v4
=v

3

∂v
_∂

v1
=v

2*
v3

∂J_∂x[i] += A[i,j] * x[j] ∂J_∂x[j] += x[i] * A[i, j]

How does it work?

To derive an entire Rel program P consisting of many SPNs, we
- analyze dependencies among SPNs of P
- construct a dependency DAG
- do backpropagation

- More generally, Jacobian accumulation

20

More Examples

21

In ML

More Matrix Calculus Examples

From our test suite:

22

More Matrix Calculus Examples

- RelAD can now mimic matrixcalculus.org
- We just need to a translator from Latex to Rel
- and another one from Rel to Latex

23

matrixcalculus.org

http://www.matrixcalculus.org/
http://www.matrixcalculus.org/

Latex ⇒ Rel (currently missing)

def z[i] = sum[j : -y[i] * X[i, j] * w[j]]

def f = sum[i : natural_log[natural_exp[z[i]] + 1.0]]

def ∇ = jacobian[f, X]

24

Rel ⇒ Rel (RelAD)

def z[i] = sum[j : -y[i] * X[i, j] * w[j]]

def f = sum[i : natural_log[natural_exp[z[i]] + 1.0]]

def ∇ = jacobian[f, X]

def ∇[i, j] = v : X[i, j] = _ and v = -y[i] * w[j] * ∂f_∂z[i]

def ∂f_∂z[i] = natural_exp[z[i]] / (natural_exp[z[i]] + 1)

25

RelAD

Rel ⇒ Latex (currently missing)

def ∇[i, j] = v : X[i, j] = _ and v = -y[i] * w[j] * ∂f_∂z[i]

def ∂f_∂z[i] = natural_exp[z[i]] / (natural_exp[z[i]] + 1)

26

ML Example: Multi-layer Neural Network

Consider a neural network with two layers, ReLU activations, and multiple outputs:

- x is the input vector, t is the target vector
- W1 is the weight matrix for the 1st layer
- W2 is the weight matrix for the 2nd layer
- Recall

The network works as follows:

27

ML Example: Multi-layer Neural Network (cont.)

Input Rel Program:

def y1[i] = sum[j : W1[i, j] * x[j]]

def z1(i, v) = y1[i] = v and v >= 0

def z1(i, v)=exists(u : y1[i]=u and u<0 and v=0)

def y2[i] = sum[j : W2[i, j] * z1[j]]

28

def z2(i, v) = y2[i] = v and v >= 0

def z2(i, v)=exists(u : y2[i]=u and u<0 and v=0)

def J = sum[i : (t[i] - z2[i]) ^ 2]

def ∇_W1 = jacobian[J, W1]

def ∇_W2 = jacobian[J, W2]

ML Example: Multi-layer Neural Network (cont.)

RelAD output:
def ∂J_∂z2[i] = 2 * (z2[i] - t[i])

def ∂J_∂y2[i] = sum[v: y2[i] >=0 and ∂J_∂z2[i] = v]

def ∇_W2[i, j] = sum[v: W2[i, j] = _ and v = ∂J_∂y2[i] * z1[j]]

def ∂J_∂z1[j] = sum[i v: z1[j] = _ and v = W2[i, j] * ∂J_∂y2[i]]

def ∂J_∂y1[i] = sum[v: y1[i] >=0 and ∂J_∂z1[i] = v]

def ∇_W1[i, j] = sum[v: W1[i, j] = _ and v = ∂J_∂y1[i] * x[j]]

29

Recursive Example

- The determinant is not directly available in Rel
- But it can be computed recursively using a Gram–Schmidt process

30

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

Recursive Example: (cont.)

- Given an (n X n)-matrix A = [A1, A2, …, An]
- Compute orthogonal vectors O = [O1, O2, …, On]

def O(i, j, v) = (j = 1 and v = A[i, 1])

def O(i, j, v) = (v = A[i, j] - sum[k s :

 k < j and s = prod_A_O[j, k] / sqr_norm_O[k] * O[i, k]])

def prod_A_O[j, k] = sum[l : A[l, j] * O[l, k]]

def sqr_norm_O[k] = sum[l : O[l, k] ^ 2]

31

Recursive Example: (cont.)

- By determinant properties,
- Because O is an orthogonal basis

def log_det = sum[k : natural_log[sqr_norm_O[k]] / 2]

def ∇ = jacobian[log_det, A]

32

RelAD and Optimization

33

Optimization with Rel stdlib?

34

Example: Linear regression with Gradient-descent

- Input
- (N×d)-matrix X where each row is a data point
- N-vector t of corresponding target responses

- Output
- d-vector w* of optimal model parameters

Example: Linear regression with Gradient-descent
def MAX_K = 10000 // maximum number of iterations

def α = 0.01 // learning rate (fixed)

def w(k, i, v) = k = 0 and range(1, d, 1, i) and v = 0.0

def y[k, i] = sum[j : X[i, j] * w[k, j]]

def J[k] = sum[i : (y[k, i] - t[i]) ^ 2]

def ∇ = jacobian[J, w]

def w(k, i, v) = k <= MAX_K and

v = w[k-1, i] - α * ∇[k-1, k-1, i]

35

36

Open Issues

Incorporating ICs: Key alignment

Consider the program

def J = sum[i : b[i] * x[i]]

def ∇ = jacobian[J, x]

Currently RelAD produces the following rule for ∇:

def ∇[i] = v : v = b[i] and x[i] = _

The extra part is due to the fact that RelAD doesn’t know that the keys of b and x are
aligned

- Even if there was an IC saying they are, our RelAD currently has no mechanism to
utilize it

37

Incorporating ICs: Matrix Symmetry

Consider the example from before

def J = sum[i j : x[i] * A[i, j] * x[j]]

If A was symmetric, then

However currently our RelAD output has no mechanism to utilize this symmetry (even if it
was encoded as an IC)

def ∇1[i] = sum[j v : x[i] = _ and v = A[i, j] * x[j]]

def ∇2[j] = sum[i v : v = x[i] * A[i, j] and x[j] = _]

def ∇[i] = merge_sum[∇1[i], ∇2[i]]

38

Multi-headed Rules

Consider the example

// J = xTAx

def J = sum[i j : x[i] * A[i, j] * x[j]]

def ∇ = jacobian[J, x]

Instead of having two rules for ∇

∇[i] += A[i, j] * x[j]

∇[j] += A[i, j] * x[i]

it is faster to have one with two heads

∇[i] += v2*v3, ∇[j] + = v1*v2 ← x[i] = v1, A[i, j] = v2, x[j] = v3

39

Other Issues

- Usage
- Integration with ML work
- Integration into existential second order (ESO) work (for optimization)

- Performance
- Dense-tensor support
- Mapping to BLAS / GPUs /
- XY-Stratification to speed up GD (Joint work with Amir Shaikhha)

40

41

What’s Out There

Some References

- Naumann, Uwe (April 2008). "Optimal Jacobian accumulation is NP-complete".
Mathematical Programming. 112 (2): 427–441.

- Baydin, Atilim Gunes; Pearlmutter, Barak; Radul, Alexey Andreyevich; Siskind, Jeffrey
(2018). "Automatic differentiation in machine learning: a survey". Journal of Machine
Learning Research. 18: 1–43.

- Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. GENO -- GENeric
Optimization for Classical Machine Learning, NeurIPS 2019.

- Sören Laue, Matthias Mitterreiter, Joachim Giesen: A Simple and Efficient Tensor
Calculus. AAAI 2020: 4527-4534

42

https://dl.acm.org/doi/10.5555/3114201.3114717
https://dl.acm.org/doi/abs/10.5555/3122009.3242010
https://papers.nips.cc/paper/8491-geno-generic-optimization-for-classical-machine-learning.pdf
https://papers.nips.cc/paper/8491-geno-generic-optimization-for-classical-machine-learning.pdf
https://arxiv.org/abs/2010.03313
https://arxiv.org/abs/2010.03313

43

Thank You!

Any Questions/Comments?

