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Motivation

F-representations that use an F-tree are special kinds of acyclic join
dependencies.

Original motivation of F-trees: derive them from the query that
produced the relation.

This talk: discover an acyclic schema from the instance. Based
loosely on [Kenig and Suciu, 2020, Kenig et al., 2020]

We used information theory to both simplify the schema discovery
and allow for noise in the data.
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Definitions

Simplified from [Olteanu and Závodný, 2012]

F-Representation and its Schema:

Definition

Scm(∅) = Scm({()}) = ∅
Scm({< A ∶ a >}) = {A}
Scm(R1 × R2) =
Scm(R1) ∪ Scm(R2)
Scm(R1 ∪ R2) =
= Scm(R1) = Scm(R2)

F-Tree of a representation:

Definition

FTree(∅) = FTree({()}) ∶ ∅
FTree({< A ∶ a >}) = node(A)
FTree(R1 × R2) =
FTree(R1) ∪ FTree(R2)
FTree(⋃a∈Dom{< A ∶ a >}×Ra) =
node(A) ∪ FTree(Ra)
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Example
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The Factorization Problem

Motivation in factorized databases: given a conjunctive query Q,
compute a factorization for its answer.
[Olteanu and Závodný, 2012, Olteanu and Závodný, 2015,
Olteanu and Schleich, 2016]:

Motivation in this talk: given instance R, discover a factorization.

More generally: discover an acyclic schema.
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Acyclic Schemas

R satisfies the join dependency &{A1, . . . ,Ak} if R = &iR[Ai ]

Fact 1 (folklore)

R admits an F-representation over an F-tree T iff it satisfies the acyclic
join dependency over the root-to-leave sets of attributes.

R[ABCDE ] = R[ABC ] & R[ABD] & R[AE ]

Fact 2 (folklore)

If R satisfies an acyclic join dependency, then it admits an
F-representation over an F-tree derived from the acyclic join.

The F-tree is not unique. E.g. R[AB] & R[BC ] & R[BD] & R[AE ]
(Proof: use the recursive def. of acyclicity [Beeri et al., 1983])
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Acyclic Schemas
On the Desirability of Acyclic Database Schemes [Beeri et al., 1983]:

12 equivalent conditions for an acyclic schema R = &{R1, . . . ,Rk}
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Multivalued Dependencies

Usual notation X ↠ Y .
Better notation X ↠ Y ∣Z where XYZ = Scm(R)

Definition

R satisfies X ↠ Y ∣Z if (x , y1, z1), (x , y2, z2) ∈ R implies (x , y1, z2) ∈ R.

Equivalent to R = R[XY ] & R[XZ ] when X disjoint from Y ,Z .

R has F-tree iff A↠ BCD ∣E , AB ↠ C ∣DE , and AB ↠ CE ∣D.
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The MVD Discovery Problem

Given an instance R, discover all MVDs that R satisfies.

Lots of work on discovering Functional Dependencies and Unique
Column Combinations; see references in [Kenig et al., 2020]

They use subset property: if an FD holds in R, then it holds in all
subsets; e.g. FastFD [Wyss et al., 2001].

Subset property fails for MVDs: need new approach.

Information Theory!
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Information Theory

Definition

Entropy of a random variable X with n outcomes: H(X ) def= −∑i pi log pi .

Entropy of joint random variables: H(XY ),H(XYZ),H(YW ), . . .

Shannon Inequalities:

H(Y ∣X ) def= H(XY ) −H(X ) ≥ 0

I (Y ;Z ∣X ) def= H(XY ) +H(XZ) −H(X ) −H(XYZ) ≥ 0

Called conditional entropy and conditional mutual information
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The Empirical Probability Distribution

p ∶ R →[0,1] p(t) = 1

∣R ∣
,∀t ∈ R H(X1⋯Xn) = log ∣R ∣

Random variables X1, . . . ,Xn correspond to its columns.

R =

X Y Z prob
a b b 1/6
b c c 1/6
b c d 1/6
b d c 1/6
b d d 1/6
c a a 1/6

H(X ) =1

6
(2 log 6 + log

6

4
)

= log 2

6
+ log 3

2
H(Y ) = . . .

. . .

H(XYZ) = log 6
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Data Dependencies through Information Theory
[Lee, 1987]:
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Approximate Acyclic Schema

Exact MVD I (Y ;Z ∣X ) = 0: brittle in the presence of noisy data.
Approximate MVD I (Y ;Z ∣X ) ≤ ε: more robust.
What is an Approximate Acyclic Schema?

Let A
def= {A1, . . . ,An} be an acyclic schema.

I(A) def= ∑
i

H(Ai ∣Ai ∩Aparent(i)) −H(Scm(R))

Theorem

[Lee, 1987] R satisfies the acyclic schema A exactly iff I(A) = 0.

Definition

[Kenig et al., 2020] R satisfies approximate acyclic schema A if I(A) ≤ ε.
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[Kenig et al., 2020]

Example: I = 0.277
Acyclic schema with 4 relations.
Compression S = 97%
Spurious tuples E = 26.8%
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Summary

F-representations that use an F-tree are special kinds of acyclic join
dependencies.

Original motivation of F-trees: derive them from the query that
produced the relation.

This talk: discover an acyclic schema from the instance.

We used information theory to both simplify the schema discovery
and allow for noise in the data.

THANK YOU!
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