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Motivation

o F-representations that use an F-tree are special kinds of acyclic join
dependencies.

@ Original motivation of F-trees: derive them from the query that
produced the relation.

@ This talk: discover an acyclic schema from the instance. Based
loosely on [Kenig and Suciu, 2020, Kenig et al., 2020]

@ We used information theory to both simplify the schema discovery
and allow for noise in the data.
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Definitions

Simplified from [Olteanu and Zavodny, 2012]
F-Representation and its Schema:
Definition

e Scm(@) =Scem({()}) =

o Scm({<A:a>})={A}

e Scm(Ry x Rp) =
Scm(R1) uScem(R2)

) Scm(R1 u Rz) =
=Scm(Ry) = Scm(Ry)
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Definitions

Simplified from [Olteanu and Zavodny, 2012]

F-Representation and its Schema: F-Tree of a representation:
Definition Definition
e Scm(@) =Sem({()}) =@ @ FTree(@) =FTree({()}): @
o Scm({<A:a>})={A} @ FTree({<A:a>}) =node(A)
e Scm(Ry x Rp) = @ FTree(Ry x Ry) =
Scm(R1) uScem(R2) FTree(R;) UFTree(Ry)
@ Scm(RLURy) = o FTree(Uapom{<A:a>}xR,) =
=Scm(Ry) = Scm(Ry) ) node(A) UFTree(R,)
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Example

Ezample 2. Consider a relation over schema {A,B,C}
and domain D = {1,...,5} that represents the inequalities
A < B < C. An f-representation of this relation is

(B:2) x (A:1) x ({(C:3) U (C:4) U (C:5))U
(B:3) x ({(A:1) U (A:2)) x ((C:4) U (C:5))U
(B:4) x ((A:1) U(A:2) U(A:3)) x (C:5).
over the f-tree B
/ \
A C m]

Ezample 3. The relation {(1,1,1),(2,1,2)} over schema
{A, B,C} does not admit an f-representation over the f-tree
from Example 2, since any such f-representation must essen-
tially be of the form (B:1) X Ea X Ec, where E4 is a union
of A-values and E¢ is a union of C-values. O
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The Factorization Problem

@ Motivation in factorized databases: given a conjunctive query Q,
compute a factorization for its answer.
[Olteanu and Zavodny, 2012, Olteanu and Zavodny, 2015,
Olteanu and Schleich, 2016]:

@ Motivation in this talk: given instance R, discover a factorization.

@ More generally: discover an acyclic schema.
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Acyclic Schemas
R satisfies the join dependency w{A1,...,Ax} if R =w»;R[A{]
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Acyclic Schemas
R satisfies the join dependency w{A1,...,Ax} if R =w»;R[A{]
Fact 1 (folklore)

R admits an F-representation over an F-tree T iff it satisfies the acyclic
join dependency over the root-to-leave sets of attributes.

®)
ONENG R[ABCDE] = R[ABC] » R[ABD] % R[AE]

Dan Suciu Factorization via Information Theory Zurich, August 2022 6/15



Acyclic Schemas
R satisfies the join dependency w{A1,...,Ax} if R =w»;R[A{]
Fact 1 (folklore)

R admits an F-representation over an F-tree T iff it satisfies the acyclic
join dependency over the root-to-leave sets of attributes.

®)
ONENG R[ABCDE] = R[ABC]  R[ABD] w R[AE]

C D

Fact 2 (folklore)

If R satisfies an acyclic join dependency, then it admits an
F-representation over an F-tree derived from the acyclic join.

The F-tree is not unique. E.g. R[AB]x R[BC]x R[BD]x R[AE]
(Proof: use the recursive def. of acyclicity [Beeri et al., 1983])
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Acyclic Schemas
On the Desirability of Acyclic Database Schemes [Beeri et al., 1983]:

12 equivalent conditions for an acyclic schema R = x{Ry,..., Ry}

Condition 3.5. The join dependency ™R is equivalent to a set of multivalued
dependencies.

Condition 3.6. The join dependency MR is equivalent to a conflict-free set of
multivalued dependencies.
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Multivalued Dependencies

Usual notation X — Y.
Better notation X - Y|Z where XYZ = Scm(R)
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Multivalued Dependencies

Usual notation X — Y.
Better notation X - Y|Z where XYZ = Scm(R)

Definition

R satisfies X - Y|Z if (x,y1,21), (x,y2,22) € R implies (x,y1,22) € R. J

Equivalent to R = R[XY] x R[XZ] when X disjoint from Y, Z.
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Multivalued Dependencies

Usual notation X — Y.
Better notation X - Y|Z where XYZ = Scm(R)

Definition

R satisfies X - Y|Z if (x,y1,21), (x,y2,22) € R implies (x,y1,22) € R. J

Equivalent to R = R[XY] x R[XZ] when X disjoint from Y, Z.

9

R has F-tree QQQ ® iff A BCD|E, AB - C|DE, and AB - CE|D.
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-
The MVD Discovery Problem

Given an instance R, discover all MVDs that R satisfies.

@ Lots of work on discovering Functional Dependencies and Unique
Column Combinations; see references in [Kenig et al., 2020]

@ They use subset property: if an FD holds in R, then it holds in all
subsets; e.g. FastFD [Wyss et al., 2001].

@ Subset property fails for MVDs: need new approach.

Information Theory!

Dan Suciu Factorization via Information Theory Zurich, August 2022 9/15



Information Theory

Definition J

Entropy of a random variable X with n outcomes: H(X) o > pilog p;.
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Information Theory

Definition J

Entropy of a random variable X with n outcomes: H(X) o > pilog p;.

Entropy of joint random variables: H(XY'), H(XYZ), H(YW),...

Dan Suciu Factorization via Information Theory Zurich, August 2022 10/15



Information Theory

Definition

Entropy of a random variable X with n outcomes: H(X) o > pilog p;. J

Entropy of joint random variables: H(XY'), H(XYZ), H(YW),...

Shannon Inequalities:
H(Y|X) CH(XY) - H(X) >0
1(Y: ZIX) Y H(XY) + H(XZ) - H(X) - H(XYZ) >0

Called conditional entropy and conditional mutual information
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-
The Empirical Probability Distribution

pR-[01]  p(6) =

e R H(XyX,) =log|R|

Random variables Xi, ..., X, correspond to its columns.
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-
The Empirical Probability Distribution

1
p:R—[0,1] p(t) =—,VteR H(XyX,) =log|R|

IR|
Random variables Xi, ..., X, correspond to its columns.

1 6
X |Y|Z]prob H(X) == (2|og6+|og—)
a|b|b| 1/6 6 4
blclcl| 1/6 _log2  log3

R=b|c|d]| 1/6 6 2

b|d|c| 1/6 H(Y)=...
b|d|d| 1/6
claja| 1/6 H(XYZ) =log6
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Data Dependencies through Information Theory
[Lee, 1987]:

Theorem 2: Let R[Q]bearelationand X, Y S
any one of the following is equivalent to the FD:|X — Y

in R[Q]:
(i) H(X) = H(XY), (26)
(i e
(iii) I(X; Y) = H(Y). (28)
[

Theorem 3: Let R[] be a relation and X, Y € Q, Z
= Q — XY. Then any one of the following is equivalent
to the MVD:|X — — Yilin R[Q].

(i) 1(Y; Z|X) = 0. | (29)
(ii) H(XYZ) = H(XY) + H(XZ) — H(X). (30)
(ili) H(YZ|X) = H(Y|X) + H(Z|X). (31)
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Approximate Acyclic Schema

Exact MVD /(Y; Z|X) = 0: brittle in the presence of noisy data.
Approximate MVD [(Y; Z|X) < e: more robust.
What is an Approximate Acyclic Schema?
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Approximate Acyclic Schema

Exact MVD /(Y; Z|X) = 0: brittle in the presence of noisy data.

Approximate MVD [(Y; Z|X) < e: more robust.
What is an Approximate Acyclic Schema?

Let A % {A1,..., A} be an acyclic schema.

Z(A) €'Y H(AA 0 Agarens() — H(Sem(R))

o
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Approximate Acyclic Schema

Exact MVD /(Y; Z|X) = 0: brittle in the presence of noisy data.
Approximate MVD [(Y; Z|X) < e: more robust.
What is an Approximate Acyclic Schema?

Let A % {A1,..., A} be an acyclic schema.

Z(A) €'Y H(AA 0 Agarens() — H(Sem(R))

Theorem
[Lee, 1987] R satisfies the acyclic schema A exactly iff Z(A) = 0.
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Approximate Acyclic Schema

Exact MVD /(Y; Z|X) = 0: brittle in the presence of noisy data.
Approximate MVD [(Y; Z|X) < e: more robust.

What is an Approximate Acyclic Schema?

Let A % {A1,..., A} be an acyclic schema.

def

Z(A) = Z H(AllAI n Aparent(i)) - H(SCIH(R))

Theorem
[Lee, 1987] R satisfies the acyclic schema A exactly iff Z(A) = 0. J

Definition
[Kenig et al., 2020] R satisfies approximate acyclic schema A if Z(A) <e. J
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(a) (b) © (@ (e) ®
< pwErGH >
= ABDEHI ABFHL
ABDFHI

J=0.044,5=65%, J=0.062,5=78%, J=0.097,5=89%,
E=8.61%.m=3 E=16.48%.m=3

J=0,5=0, J=0.009,5=28%, J=0.021,5=46%,
E=0%.m=1 = m=2 E=3.42%.m=2 E=7.62%m=3

© ® 0] @
BCoEF > G D
FEp|lemaer B S O
J=0.345,5=97.4%,

J=0.17,5=94%, J=0.277,5=95.7%, J=0.33,5=92.6%,
E=26.6%,m=3 E=26.8%,m=4 E=51.4%m=3 E=45.2%,m=4

Fig. 10  The Nursery use case, showing the 10 pareto optimal schemes (out of 415). We encode the 9 attributes as A, B, - - - ,I (top). The data
does not admit a exact decomposition (a), but we obtain increasingly better schemes (b)-(j) as we increase the J-measure, with increased space
savings S, at the cost of increased rate of spurious tuples E; for example, for ] = 0.277 the data decomposes into 4 relations, S = 95.7% (see text for

the explanation of why it is so high) and E = 26.8%.

[Kenig et al., 2020]

Example: 7 =0.277

Acyclic schema with 4 relations.
Compression S = 97%

Spurious tuples E = 26.8%
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Fig. 10  The Nursery use case, showing the 10 pareto optimal schemes (out of 415). We encode the 9 attributes as A, B, - - - ,I (top). The data
does not admit a exact decomposition (a), but we obtain increasingly better schemes (b)-(j) as we increase the J-measure, with increased space

savings S, at the cost of increased rate of spurious tuples E; for example, for ] = 0.277 the data decomposes into 4 relations, S = 95.7% (see text for
the explanation of why it is so high) and E = 26.8%.

[Kenig et al., 2020]

Savings In storage (%)

Example: 7 =0.277

Acyclic schema with 4 relations. oom m w e w @
Compression S = 97%

. 0 Fig. 11 All 415 schemes discovered for Nursery. The plot shows
Spu rious tu p|eS E =26.8 A) the savings S v.s. the spurious tuples E. The line connects the ten

pareto-optimal schemes further detailed in Fig. 10..
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Summary

@ F-representations that use an F-tree are special kinds of acyclic join
dependencies.

@ Original motivation of F-trees: derive them from the query that
produced the relation.

@ This talk: discover an acyclic schema from the instance.

@ We used information theory to both simplify the schema discovery
and allow for noise in the data.
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Summary

@ F-representations that use an F-tree are special kinds of acyclic join
dependencies.

@ Original motivation of F-trees: derive them from the query that
produced the relation.

@ This talk: discover an acyclic schema from the instance.

@ We used information theory to both simplify the schema discovery
and allow for noise in the data.

THANK YOU!
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