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Debugging Datalog

l Datalog has seen a resurgence in academia & industry
l Programming distributed systems
l Complex data-intensive computations
l Analytics & ML over query results

l Urgent need for debugging Datalog programs
l Why did my program produce this unexpected result?
l Why did my program not produce this expected result?
l Which rules are responsible for deriving this result?
l Why did this rule derivation fail?
l Would deleting & inserting a tuple change the result?



PUG + PUGS
Efficient capture and summarization for why and why-
not provenance through a provenance model developed

for queries with negation



PUG + PUGS
Efficient capture and summarization for why and why-
not provenance through a provenance model developed

for queries with negation

This is FDB!
PUG utilizes a flat-relational encoding of provenance 
graphs which essentially corresponds to a factorized 

representation of provenance



Schism between Why / 
Why-not

l How the rules of a program did derive / failed to derive an
existing / missing output from the input data

Why Why-not
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Q(a) was 
derived?

Why Q(b) is 
NOT in the 

result?

Q(A) :- R(A,B), S(B)
Q



Unifying Why / Why-not

l Why (provenance) and why-not (missing answers) have
been mostly treated in isolation
l Why and why-not questions can be reduced to each other
for a query language L if …

l for any query Q, its complement QC is in L

Q(A) :- R(A,B)
QC(A):- R(A,B), adom(A), adom(B)
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Requirements

l Syntax-driven
l Provenance structure aligns with program structure

l Compatible with well-established provenance models
l Provenance polynomials for positive queries [1]
l Dual polynomials [2]

l Build-in support for sharing common subexpressions

[1] T. Green, G. Karvounarakis, and V. Tannen. Provenance 
semirings. In PODS, pages 31–40, 2007. 
[2] E.Grädel and V.Tannen.Semiring provenance for first-order model checking. arXiv
preprint arXiv:1712.01980, 2017.



Provenance Graph Model
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Provenance Graph Model
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Provenance Graph Model
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Provenance Graph Model
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r(c,c) r(c,d)

Provenance Graph Model

l Equivalent model (annotated rule derivations)

r(c,c)

r(c,d)

(F,T)

(T,F)

R(c,c) S(d)

g1(c,c) g2(d)

Q(c) Q(c) :- R(c,c), ¬ S(c)



Extracting Provenance
Polynomials



Factorized Provenance 
Graphs
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Computing Provenance

Problem definition
input: (missing) answers of interest
output: relevant subgraph for all answers of interest

Instrumentation of the input Datalog program
• Use firing rules to capture rule derivations
• Goal-oriented approach 

• Limit the provenance based on the user question
• Efficient bottom-up evaluation using relational engines
• Compiling rewritten program into SQL



Overview

Rewriting steps
• Unifying the program with specification of outputs of interest

• Statically annotate program to indicate interest in success / failure

• Creating firing rules
• Checking connectivity with joins
• Computing the edge relation of the provenance graph

Example query and provenance question

WHY Q(n,s)?



Computing Provenance

Rewriting steps
• Unifying the program with specification of outputs of interest

• Statically annotate program to indicate interest in success / failure

• Creating firing rules
• Checking connectivity with joins
• Computing the edge relation of the provenance graph



Computing Explanations

Step 1: Unifying the program with the question
• Limit computation by binding variables to constants

• Propagating constants in the question throughout the program

Example
• Binding variables: X = n (New York) and Y = s (Seattle)

+
WHY Q(n,s)



Computing Explanations

Step 2: Annotating rule with success / failure
• To determine the state of nodes
• The question provides information about success / failure

True = Success / Exist False = Failed / Not Exist

• Propagate annotations throughout the unified program

Example
▷ WHY Q(n,s) implies only successful goals need to be captured

+
WHY Q(n,s)



We may have to create multiple partially unified versions
of a rule or an EDB atom. For example, to explore successful
derivations of Q(n, s), we are interested in both train con-
nections from New York to some city (T(n, Z)) and from
any city to Seattle (T(Z, s)). Furthermore, we need to know
whether there is a direct connection from New York to Seattle
(T(n, s)). The general idea of this step is motivated by [2]
which introduced “magic sets”, an approach for rewriting
logical rules to cut down irrelevant facts by using additional
predicates called “magic predicates”. Similar techniques exist
in standard relational optimization under the name of predicate
move-around. We use the technique of propagating variable
bindings in the query to restrict the computation based on
the user’s interest. This approach is correct because if we
bind a variable in the head of rule, then only rule derivations
that agree with this binding can derive tuples that agree with
this binding. Based on this unification step, we know which
bindings may produce fragments of PG(P, I) that are relevant
for explaining the PQ. The algorithm implementing this step
is given in our accompanying technical report [21].

B. Add Annotations based on Success/Failure

For WHY and WHYNOT questions, we only consider
tuples that are existing and missing, respectively. Based on this
information, we can infer restrictions on the success/failure
status of nodes in the provenance graph that are connected
to PQ node(s) (belong to the explanation). We store these
restrictions as annotations T , F , and F/T on heads and goals
of rules. Here, T indicates that we are only interested in
successful nodes, F that we are only interested in failed nodes,
and F/T that we are interested in both. These annotations are
determined using a top-down propagation seeded with the PQ.

Example 5. Continuing with our running example question
WHY Q(n, s), we know that Q(n, s) is successful because the
tuple is in the result (Fig. 1). This implies that only successful
rule nodes and their successful goal nodes can be connected
to this tuple node. Note that this annotation does not imply
that the rule r1 would be successful for every Z (i.e., every
intermediate stop between New York and Seattle). It only indi-
cates that it is sufficient to focus on successful rule derivations
since failed ones cannot be connected to Q(n, s).

r(X=n,Y=s),T
1 : Q(n, s)T :� T(n, Z)T , T(Z, s)T ,¬ T(n, s)T

We now propagate the annotations of the goals in r1 through-
out the program. That is, for any goal that is an IDB predicate,
we propagate its annotation to the head of all rules deriving
the goal’s predicate and, then, propagate these annotations
to the corresponding rule bodies. Note that the inverted
annotation is propagated for negated goals. For instance, if
T would be an IDB predicate, then the annotation on the goal
¬ T(n, s)T would be propagated as follows. We would annotate
the head of all rules deriving T(n, s) with F , because Q(n, s)
can only exist if T(n, s) does not exist.

Partially unified atoms (such as T(n, Z)) may occur in
both negative and positive goals of the rules of the program.
We denote such atoms using a F/T annotation. The use
of these annotations will become more clear in the next
subsection when we introduce firing rules. The pseudocode

FQ,T(n, s) :� Fr1,T(n, s, Z)

Fr1,T(n, s, Z) :� FT,T(n, Z), FT,T(Z, s), FT,F(n, s)

FT,T(n, Z) :� T(n, Z)

FT,T(Z, s) :� T(Z, s)

FT,F(n, s) :�¬ T(n, s)

Fig. 4: Example firing rules for WHY Q(n, s)

for the algorithm that determines these annotations is given in
our accompanying technical report [21]. In short:

1) Annotate the head of all rules deriving tuples matching
the question with T (why) or F (why-not).

2) Repeat the following steps until a fixpoint is reached:
a) Propagate the annotation of a rule head to goals in

the rule body as follows: propagate T for T annotated
heads and F/T for F annotated heads.

b) For each annotated goal in the rule body, propagate its
annotation to all rules that have this atom in the head.
For negated goals, unless the annotation is F/T , we
propagate the inverted annotation (e.g., F for T ) to the
head of rules deriving the goal’s predicate.

C. Creating Firing Rules

To be able to compute the relevant subgraph of PG(P, I)
(the explanation) for the provenance question PQ, we need to
determine successful and/or failed rule derivations. Each rule
derivation paired with the information whether it is successful
over the given database instance (and which goals are failed
in case it is not successful) corresponds to a certain subgraph.
Successful rule derivations are always part of PG(P, I) for a
given query (input program) P whereas failed rule derivations
only appear if the tuple in the head failed, i.e., there are no
successful derivations of any rule with this head. To capture
the variable bindings of successful/failed rule derivations, we
create “firing rules”. For successful rule derivations, a firing
rule consists of the body of the rule (but using the firing version
of each predicate in the body) and a new head predicate that
contains all variables used in the rule. In this way, the firing
rule captures all the variable bindings of a rule derivation.
Furthermore, for each IDB predicate R that occurs as a head
of a rule r, we create a firing rule that has the firing version
of predicate R in the head and a firing version of the rule r
deriving the predicate in the body. For EDB predicates, we
create firing rules that have the firing version of the predicate
in the head and the EDB predicate in the body.

Example 6. Consider the annotated program in Example 5 for
the question WHY Q(n, s). We generate the firing rules shown
in Fig. 4. The firing rule for r(X=n,Y=s),T

1 (the second rule
from the top) is derived from the rule r1 by adding Z (the only
existential variable) to the head, renaming the head predicate
as Fr1,T, and replacing each goal with its firing version (e.g.,
FT,T for the two positive goals and FT,F for the negated goal).
Note that negated goals are replaced with firing rules that have
inverted annotations (e.g., the goal ¬ T(n, s)T is replaced with
FT,F(n, s)). Furthermore, we introduce firing rules for EDB
tuples (the three rules from the bottom in Fig. 4)

Computing Explanations

Step 3: Create firing rules
• Capture successful / failed derivations for 

the variable binding

Example
• Create new head by adding the variable Z and use firing versions

• Invert the annotation T for the goal ¬ T(n,s) in the firing version



We may have to create multiple partially unified versions
of a rule or an EDB atom. For example, to explore successful
derivations of Q(n, s), we are interested in both train con-
nections from New York to some city (T(n, Z)) and from
any city to Seattle (T(Z, s)). Furthermore, we need to know
whether there is a direct connection from New York to Seattle
(T(n, s)). The general idea of this step is motivated by [2]
which introduced “magic sets”, an approach for rewriting
logical rules to cut down irrelevant facts by using additional
predicates called “magic predicates”. Similar techniques exist
in standard relational optimization under the name of predicate
move-around. We use the technique of propagating variable
bindings in the query to restrict the computation based on
the user’s interest. This approach is correct because if we
bind a variable in the head of rule, then only rule derivations
that agree with this binding can derive tuples that agree with
this binding. Based on this unification step, we know which
bindings may produce fragments of PG(P, I) that are relevant
for explaining the PQ. The algorithm implementing this step
is given in our accompanying technical report [21].

B. Add Annotations based on Success/Failure

For WHY and WHYNOT questions, we only consider
tuples that are existing and missing, respectively. Based on this
information, we can infer restrictions on the success/failure
status of nodes in the provenance graph that are connected
to PQ node(s) (belong to the explanation). We store these
restrictions as annotations T , F , and F/T on heads and goals
of rules. Here, T indicates that we are only interested in
successful nodes, F that we are only interested in failed nodes,
and F/T that we are interested in both. These annotations are
determined using a top-down propagation seeded with the PQ.

Example 5. Continuing with our running example question
WHY Q(n, s), we know that Q(n, s) is successful because the
tuple is in the result (Fig. 1). This implies that only successful
rule nodes and their successful goal nodes can be connected
to this tuple node. Note that this annotation does not imply
that the rule r1 would be successful for every Z (i.e., every
intermediate stop between New York and Seattle). It only indi-
cates that it is sufficient to focus on successful rule derivations
since failed ones cannot be connected to Q(n, s).

r(X=n,Y=s),T
1 : Q(n, s)T :� T(n, Z)T , T(Z, s)T ,¬ T(n, s)T

We now propagate the annotations of the goals in r1 through-
out the program. That is, for any goal that is an IDB predicate,
we propagate its annotation to the head of all rules deriving
the goal’s predicate and, then, propagate these annotations
to the corresponding rule bodies. Note that the inverted
annotation is propagated for negated goals. For instance, if
T would be an IDB predicate, then the annotation on the goal
¬ T(n, s)T would be propagated as follows. We would annotate
the head of all rules deriving T(n, s) with F , because Q(n, s)
can only exist if T(n, s) does not exist.

Partially unified atoms (such as T(n, Z)) may occur in
both negative and positive goals of the rules of the program.
We denote such atoms using a F/T annotation. The use
of these annotations will become more clear in the next
subsection when we introduce firing rules. The pseudocode

FQ,T(n, s) :� Fr1,T(n, s, Z)

Fr1,T(n, s, Z) :� FT,T(n, Z), FT,T(Z, s), FT,F(n, s)

FT,T(n, Z) :� T(n, Z)

FT,T(Z, s) :� T(Z, s)

FT,F(n, s) :�¬ T(n, s)

Fig. 4: Example firing rules for WHY Q(n, s)

for the algorithm that determines these annotations is given in
our accompanying technical report [21]. In short:

1) Annotate the head of all rules deriving tuples matching
the question with T (why) or F (why-not).

2) Repeat the following steps until a fixpoint is reached:
a) Propagate the annotation of a rule head to goals in

the rule body as follows: propagate T for T annotated
heads and F/T for F annotated heads.

b) For each annotated goal in the rule body, propagate its
annotation to all rules that have this atom in the head.
For negated goals, unless the annotation is F/T , we
propagate the inverted annotation (e.g., F for T ) to the
head of rules deriving the goal’s predicate.

C. Creating Firing Rules

To be able to compute the relevant subgraph of PG(P, I)
(the explanation) for the provenance question PQ, we need to
determine successful and/or failed rule derivations. Each rule
derivation paired with the information whether it is successful
over the given database instance (and which goals are failed
in case it is not successful) corresponds to a certain subgraph.
Successful rule derivations are always part of PG(P, I) for a
given query (input program) P whereas failed rule derivations
only appear if the tuple in the head failed, i.e., there are no
successful derivations of any rule with this head. To capture
the variable bindings of successful/failed rule derivations, we
create “firing rules”. For successful rule derivations, a firing
rule consists of the body of the rule (but using the firing version
of each predicate in the body) and a new head predicate that
contains all variables used in the rule. In this way, the firing
rule captures all the variable bindings of a rule derivation.
Furthermore, for each IDB predicate R that occurs as a head
of a rule r, we create a firing rule that has the firing version
of predicate R in the head and a firing version of the rule r
deriving the predicate in the body. For EDB predicates, we
create firing rules that have the firing version of the predicate
in the head and the EDB predicate in the body.

Example 6. Consider the annotated program in Example 5 for
the question WHY Q(n, s). We generate the firing rules shown
in Fig. 4. The firing rule for r(X=n,Y=s),T

1 (the second rule
from the top) is derived from the rule r1 by adding Z (the only
existential variable) to the head, renaming the head predicate
as Fr1,T, and replacing each goal with its firing version (e.g.,
FT,T for the two positive goals and FT,F for the negated goal).
Note that negated goals are replaced with firing rules that have
inverted annotations (e.g., the goal ¬ T(n, s)T is replaced with
FT,F(n, s)). Furthermore, we introduce firing rules for EDB
tuples (the three rules from the bottom in Fig. 4)

Computing Explanations

Step 4: Connectivity joins
• Firing rules are not sufficient to determine which subgraphs of 

the provenance explain the outputs of interest

• Filter derivations by checking whether connectivity

• Check connectivity from the question node one hop at a time

Example
• No guarantees for the nodes in the red box
• Tuple node T(n,c) is only connected iff T(c,s) exists

tuples (R(t)F ), we extract all variables from t (some arguments
may be constants propagated during unification) and create a
rule that returns all tuples that can be formed from values
of the associated domains of the attributes these variables are
bound to and do not exist in R. This is achieved by adding
goals dom(Xi) as explained in Example 7.

Rules. Consider a rule r : R(t) :� g1( ~X1), . . . , gn( ~Xn). If the
head of r is annotated with T , then we create a rule with
head Fr,T( ~X) where ~X = vars(r) and the same body as r
except that each goal is replaced with its firing version with
appropriate annotation (e.g., T for positive goals). For rules
annotated with F or F/T , we create one additional rule with
head Fr,F( ~X, ~V ) where ~X is defined as above, and ~V contains
Vi if the ith goal of r is positive and ¬Vi otherwise. The
body of this rule contains the F/T version of every goal in
r’s body plus an additional goal FR,F to ensure that the head
atom is failed. As an example for this type of rule, consider
the third rule from the top in Fig. 5.

IDB atoms. For each rule r with head R(t), we create a rule
FR,T(t) :� Fr,T( ~X) where ~X is the concatenation of t with all
existential variables from the body of r. IDB atoms with F or
F/T annotations are handled in the same way as EDB atoms
with these annotations. For each R(t)F , we create a rule with
¬ FR,T(t) in the body using the associated domain queries to
restrict variable bindings. For R(t)F/T , we add two additional
rules as shown in Fig. 5 for EDB atoms.

Theorem 1 (Correctness of Firing Rules). Let P be an input
program, r denote a rule of P with m goals, and PFire be the
firing version of P . We use r(t) |= P (I) to denote that the rule
derivation r(t) is successful in the evaluation of program P
over I . The firing rules for P correctly determine existence of
tuples, successful rule derivations, and failed rule derivations
for missing answers:

• FR,T(t) 2 PFire(I) $ R(t) 2 P (I)

• FR,F(t) 2 PFire(I) $ R(t) 62 P (I)

• Fr,T(t) 2 PFire(I) $ r(t) |= P (I)

• Fr,F(t, ~V ) 2 PFire(I) $ r(t) 6|= P (I) ^ head(r(t)) 62

P (I) and for i 2 {1, . . . ,m} we have that Vi is false iff
ith goal fails in r(t).

Proof: We prove Theorem 1 by induction over the struc-
ture of a program. For the base case, we consider programs of
“depth” 1, i.e., only EDB predicates are used in rule bodies.
Then, we prove correctness for programs of depth n+1 based
on the correctness of programs of depth n. We define the depth
d of predicates, rules, and programs as follows: 1) for all EDB
predicates R, we define d(R) = 0; 2) for an IDB predicate R,
we define d(R) = maxhead(r)=R d(r), i.e., the maximal depth
among all rules r with head(r) = R; 3) the depth of a rule r
is d(r) = maxR2body(r) d(R) + 1, i.e., the maximal depth of
all predicates in its body plus one; 4) the depth of a program
P is the maximum depth of its rules: d(P ) = maxr2P d(r).

1) Base Case. Assume that we have a program P with depth
1, e.g., r : Q( ~X) :� R( ~X1), . . . , R( ~Xn). We first prove that the
positive and negative versions of firing rules for EDB atoms are
correct, because only these rules are used for the rules of depth

FQ,T(n, s) :� Fr1,T(n, s, Z)

Fr1,T(n, s, Z) :� FT,T(n, Z), FT,T(Z, s), FT,F(n, s)

FCr2,r11,T(n, Z) :� T(n, Z), Fr1,T(n, s, Z)

FCr2,r21,T(Z, s) :� T(Z, s), Fr1,T(n, s, Z)

FT,F(n, s) :�¬ T(n, s)

Fig. 6: Example firing rules with connectivity checks

1 programs. A positive version of EDB firing rule FR,T creates
a copy of the input relation R and, thus, a tuple t 2 FR,T iff
t 2 R. For the negative version FR,F, all variables are bound
to associated domains dom and it is explicitly checked that
¬R( ~X) is true. Finally, FR,F/T uses FR,T and FR,F (as third and
fourth rules from the bottom in Fig. 5) to determine whether
the tuple exists in R. Since these rules are correct, it follows
that FR,F/T is correct. The positive firing rule for the rule
r (Fr,T) is correct since its body only contains positive and
negative EDB firing rules (FR,T and FR,F, respectively) which
are already known to be correct. The correctness of the positive
firing version of a rule’s head predicate (FQ,T) follows naturally
from the correctness of Fr,T. The negative version of the rule
Fr,F( ~X, ~V ) contains an additional goal (i.e., ¬ Q( ~X)) and uses
the firing version FR,F/T to return only bindings for failed
derivations. Since FR,F/T has been proven to be correct, we
only need to prove that the negative firing version of the head
predicate of r is correct. For a head predicate with annotation
F , we create two firing rules (FQ,T and FQ,F). The rule FQ,T was
already proven to be correct as in positive case. FQ,F is also
correct, because it contains only FQ,T and domain queries in
the body which were already known to be correct.

2) Inductive Step. It remains to be shown that firing rules for
programs of depth n+ 1 are correct. Assume that firing rules
for programs of depth up to n are correct. Let r be a firing
rule of depth n+1 in a program of depth n+1. It follows that
maxR2body(r) d(R)  n (i.e., the maximum depth among all
predicates in the body of r should be n or less), otherwise r
would be of a depth larger than n+1. Based on the induction
hypothesis, it is guaranteed that the firing rules for all these
predicates are correct. Using the same argument as in the base
case, it follows that the firing rule for r is correct.

D. Connectivity Joins

To be in the result of firing rules is a necessary, but not
sufficient, condition for the corresponding rule node to be
connected to a PQ node in the explanation. Thus, to guarantee
that only nodes connected to the PQ node(s) are returned, we
have to check whether they are actually connected.

Example 8. Consider the firing rules for WHY Q(n, s) shown
in Fig. 4. The corresponding rules with connectivity checks
are shown in Fig. 6. All the rule nodes corresponding to
Fr1,T(n, s, Z) are guaranteed to be connected to the PQ node
Q(n, s). For sake of the example, assume that instead of using
T, rule r1 uses an IDB relation R which is computed using
another rule r2 : R(X,Y ) :� T(X,Y ). Consider the firing rule
Fr2,T(n, Z) :� T(n, Z) created based on the first goal of r1.
Some provenance graph fragments computed by this rule may
not be connected to Q(n, s). A tuple node R(n, c) for a constant
c is only connected to the node Q(n, s) iff it is part of a



Computing Explanations

Step 5: Computing provenance subgraph edge relation
• Create edges for the provenance graph (explanation)

• Generate rules for the edge relation based on the rule binding information

• Use node identifier

• Type of the node, assignments to constants, success/failure state
• Each rule corresponds to a pattern in the graph

Example (partial) rules deriving the edge relation 

- Provenance graph structure -



Implementation

PUG (Provenance Unification through Graphs) architecture
• Extension of GProM supporting Datalog provenance

• GProM is a SQL+X – to – SQL optimizing compiler

• Relational algebra as IR



Outline

l Overview & Motivation
l Provenance Graph Model
l Capturing Provenance
l Factorization
l Experiments
l Conclusions & Future work



Recap

Our provenance graphs can encode factorized 
polynomials
• What factorization we get is determined by the structure of the 

program

Q() :- S(X), U(X,Y)
Q() :- T(X), U(X,Y)                                            

Q() :- Q2(X), Q1(X)
Q1(X) :- S(X)
Q1(X) :- T(X)
Q2(X) :- U(X,Y)



Utilizing work on 
factorization
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• Rewrite input query to produce this factorization
• Apply capture rewriting
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Fig. 12: Factorized and flat provenance graphs (N[X]) explaining Why Q2hop(d) and two d-trees for r4.

e.g., {(a)}⇥({(b)}[{(c)}) is a factorized representation
of the relation {(a, b), (a, c)}. Following the convention
from [31], we denote a singleton {(a)} as a. Factoriza-
tion can be applied to compactly represent relations and
query results as well as provenance (e.g., Fig. 12b). We
will factorize representations of provenance which en-
code variables of provenance polynomials as the tuples
annotated by these variables and show how to extract
provenance polynomials from provenance graphs gener-
ated in this way.
F-trees for F-reps. Olteanu et al. [32] introduce f-

trees to encode the nesting structure of f-reps. At first,
let us consider only f-trees which encode the nesting
structure of a boolean query [31]. An f-tree for a boolean
query Q (e.g., r4 in Fig. 12a) is a rooted forest with one
node for every variable of Q.4 An f-rep according to an
f-tree T nests values according to T : a node labelled
with X corresponds to a union of values from the at-
tributes bound to X by the query. The values of at-
tributes bound to children of a node X corresponding
to a single value x bound to X are grouped under x. If
a node has multiple children, then their f-reps are con-
nected via ⇥. For example, consider an f-tree T with
root X and a single child Y for a query Q() :� R(X,Y ).
An f-rep of Q according to T would be of the form
x1 ⇥ (y11 [ . . . [ yn1) [ . . . [ xm ⇥ (y1m [ . . . [ ynm),
i.e., the Y values co-occurring with a given X value x
are grouped as a union and then paired with x. An f-
tree encodes (conditional) independence of the variables
of a query in the sense that the values of one variable
do not depend on the values of another variable. For
instance, two siblings X and Y in an f-tree have to be
independent since a union of X values is paired (cross-

4 In [32], relational algebra is used to express queries and nodes
of f-trees represent equivalence classes of attributes which in Dat-
alog correspond to query variables.

product) with a union of Y values. This is only correct
if the values of X and Y are independent. The indepen-
dence assumptions encoded in an f-tree may not hold
for every possible query with the same schema as the
f-tree. Thus, only some f-trees with a particular schema
may be applicable for a query with this schema. It was
shown in [32], that a query has an f-rep over an f-tree T

for any database iff for each relation in Q the variables
assigned to attributes of this relation (these variables
are called dependent) are on the same root-to-leaf path
in the f-tree. This is called the path condition. Note
that multiple references to the same relation in a query
are considered as separate relations when checking this
condition. For instance, consider the boolean query r4
in Fig. 12a which checks if there are paths of length 2
ending in the node d. Fig. 12c shows two f-trees T1 and
T2 for this query (ignore the sets on the side of nodes
for now). An f-rep according to T2 for r4 would encode
a union of Y values paired (⇥) with a union of Z values
for this Y value. Each Z value nested under a Y value
is then paired with a cross-product of L1 and L2 values.
D-trees for D-reps. The size of a factorized repre-
sentation can be further reduced by allowing subex-
pressions to be shared through definitions, i.e., using
algebra graphs instead of trees. In [32], such represen-
tations are called d-representations (d-rep). Analogous
to how f-trees define the structure of f-reps, d-trees were
introduced to define the structure of d-reps. A d-tree is
an f-tree where each node X is annotated with a set
key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The
f-rep of the subtree rooted in X is unique for each com-
bination of values from key(X). That is, if key(X) is a
strict subset of the ancestors of X, then the same d-rep
for the subtree at X can be shared by multiple ances-
tors, reducing the size of the representation. In Fig. 12c,
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node for every variable of Q.4 An f-rep according to an
f-tree T nests values according to T : a node labelled
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instance, two siblings X and Y in an f-tree have to be
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product) with a union of Y values. This is only correct
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dence assumptions encoded in an f-tree may not hold
for every possible query with the same schema as the
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may be applicable for a query with this schema. It was
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in the f-tree. This is called the path condition. Note
that multiple references to the same relation in a query
are considered as separate relations when checking this
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in Fig. 12a which checks if there are paths of length 2
ending in the node d. Fig. 12c shows two f-trees T1 and
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is then paired with a cross-product of L1 and L2 values.
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sentation can be further reduced by allowing subex-
pressions to be shared through definitions, i.e., using
algebra graphs instead of trees. In [32], such represen-
tations are called d-representations (d-rep). Analogous
to how f-trees define the structure of f-reps, d-trees were
introduced to define the structure of d-reps. A d-tree is
an f-tree where each node X is annotated with a set
key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The
f-rep of the subtree rooted in X is unique for each com-
bination of values from key(X). That is, if key(X) is a
strict subset of the ancestors of X, then the same d-rep
for the subtree at X can be shared by multiple ances-
tors, reducing the size of the representation. In Fig. 12c,



Utilizing work on 
factorization

Approach
• Determine worst-case optimal d-tree factorization

• Rewrite input query to produce this factorization
• Apply capture rewriting

26 Seokki Lee et al.

r3 : Q2hop(X) :� H(Y, L1, Z), H(Z,L2, X)

r4 : Q2hop�d() :� H(Y, L1, Z), H(Z,L2, d)

r5 : Q2hop() :� QL1(Z), QL2(Z)

r50 : QL1(Z) :� H(Y, L1, Z)

r500 : QL2(Z) :� H(Z,L2, d)

a

b

c d

l1

l2

l3

l4

l5

l6

Relation H

S L E

a l1 c s1
a l2 c s2
b l3 c t1
b l4 c t2
c l5 d u1

c l6 d u2

(a) 2hop queries (r3 and r4), rewriting (r5, r05, r005 ) according to d-tree T1, and example
database (graph)

+

·

+ +

· · · · · ·

s1 s2 t1 t2 u1 u2

(s1 + s2 + t1 + t2) · (u1 + u2)

(b) Factorized representation (r5, r50 , r500 )

Y{Z,L1}

Z{}

L1
{Z} L2

{Z}

Y{}

Z{Y }

L1
{Y, Z} L2

{Z}

(c) Two d-trees of r4: T1 (left) and T2 (right)

+

· · · · · · · ·

s1 u1 s1 u2 s2 u1 s2 u2 t1 u1 t1 u2 t2 u1 t2 u2

s1 · u1 + s1 · u2 + s2 · u1 + s2 · u2 + t1 · u1 + t1 · u2 + t2 · u1 + t2 · u2

(d) Flat representation (r4)

Fig. 12: Factorized and flat provenance graphs (N[X]) explaining Why Q2hop(d) and two d-trees for r4.
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of the relation {(a, b), (a, c)}. Following the convention
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tion can be applied to compactly represent relations and
query results as well as provenance (e.g., Fig. 12b). We
will factorize representations of provenance which en-
code variables of provenance polynomials as the tuples
annotated by these variables and show how to extract
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trees to encode the nesting structure of f-reps. At first,
let us consider only f-trees which encode the nesting
structure of a boolean query [31]. An f-tree for a boolean
query Q (e.g., r4 in Fig. 12a) is a rooted forest with one
node for every variable of Q.4 An f-rep according to an
f-tree T nests values according to T : a node labelled
with X corresponds to a union of values from the at-
tributes bound to X by the query. The values of at-
tributes bound to children of a node X corresponding
to a single value x bound to X are grouped under x. If
a node has multiple children, then their f-reps are con-
nected via ⇥. For example, consider an f-tree T with
root X and a single child Y for a query Q() :� R(X,Y ).
An f-rep of Q according to T would be of the form
x1 ⇥ (y11 [ . . . [ yn1) [ . . . [ xm ⇥ (y1m [ . . . [ ynm),
i.e., the Y values co-occurring with a given X value x
are grouped as a union and then paired with x. An f-
tree encodes (conditional) independence of the variables
of a query in the sense that the values of one variable
do not depend on the values of another variable. For
instance, two siblings X and Y in an f-tree have to be
independent since a union of X values is paired (cross-
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of f-trees represent equivalence classes of attributes which in Dat-
alog correspond to query variables.

product) with a union of Y values. This is only correct
if the values of X and Y are independent. The indepen-
dence assumptions encoded in an f-tree may not hold
for every possible query with the same schema as the
f-tree. Thus, only some f-trees with a particular schema
may be applicable for a query with this schema. It was
shown in [32], that a query has an f-rep over an f-tree T

for any database iff for each relation in Q the variables
assigned to attributes of this relation (these variables
are called dependent) are on the same root-to-leaf path
in the f-tree. This is called the path condition. Note
that multiple references to the same relation in a query
are considered as separate relations when checking this
condition. For instance, consider the boolean query r4
in Fig. 12a which checks if there are paths of length 2
ending in the node d. Fig. 12c shows two f-trees T1 and
T2 for this query (ignore the sets on the side of nodes
for now). An f-rep according to T2 for r4 would encode
a union of Y values paired (⇥) with a union of Z values
for this Y value. Each Z value nested under a Y value
is then paired with a cross-product of L1 and L2 values.
D-trees for D-reps. The size of a factorized repre-
sentation can be further reduced by allowing subex-
pressions to be shared through definitions, i.e., using
algebra graphs instead of trees. In [32], such represen-
tations are called d-representations (d-rep). Analogous
to how f-trees define the structure of f-reps, d-trees were
introduced to define the structure of d-reps. A d-tree is
an f-tree where each node X is annotated with a set
key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The
f-rep of the subtree rooted in X is unique for each com-
bination of values from key(X). That is, if key(X) is a
strict subset of the ancestors of X, then the same d-rep
for the subtree at X can be shared by multiple ances-
tors, reducing the size of the representation. In Fig. 12c,
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node for every variable of Q.4 An f-rep according to an
f-tree T nests values according to T : a node labelled
with X corresponds to a union of values from the at-
tributes bound to X by the query. The values of at-
tributes bound to children of a node X corresponding
to a single value x bound to X are grouped under x. If
a node has multiple children, then their f-reps are con-
nected via ⇥. For example, consider an f-tree T with
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instance, two siblings X and Y in an f-tree have to be
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product) with a union of Y values. This is only correct
if the values of X and Y are independent. The indepen-
dence assumptions encoded in an f-tree may not hold
for every possible query with the same schema as the
f-tree. Thus, only some f-trees with a particular schema
may be applicable for a query with this schema. It was
shown in [32], that a query has an f-rep over an f-tree T

for any database iff for each relation in Q the variables
assigned to attributes of this relation (these variables
are called dependent) are on the same root-to-leaf path
in the f-tree. This is called the path condition. Note
that multiple references to the same relation in a query
are considered as separate relations when checking this
condition. For instance, consider the boolean query r4
in Fig. 12a which checks if there are paths of length 2
ending in the node d. Fig. 12c shows two f-trees T1 and
T2 for this query (ignore the sets on the side of nodes
for now). An f-rep according to T2 for r4 would encode
a union of Y values paired (⇥) with a union of Z values
for this Y value. Each Z value nested under a Y value
is then paired with a cross-product of L1 and L2 values.
D-trees for D-reps. The size of a factorized repre-
sentation can be further reduced by allowing subex-
pressions to be shared through definitions, i.e., using
algebra graphs instead of trees. In [32], such represen-
tations are called d-representations (d-rep). Analogous
to how f-trees define the structure of f-reps, d-trees were
introduced to define the structure of d-reps. A d-tree is
an f-tree where each node X is annotated with a set
key(X), a subset of its ancestors in the f-tree on which
the node and any of its dependents depend on. The
f-rep of the subtree rooted in X is unique for each com-
bination of values from key(X). That is, if key(X) is a
strict subset of the ancestors of X, then the same d-rep
for the subtree at X can be shared by multiple ances-
tors, reducing the size of the representation. In Fig. 12c,
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Experiments

l TPC-H
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Experiments

l TPC-H
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Conclusions

l Provenance graph model
l Provenance structure aligns with program structure
l Compatible with well-established provenance models
l Provenance polynomials for positive queries + dual polynomials
l Build-in support for sharing common subexpressions
l Flat relational encoding as edge relation

l Capturing Provenance
l Incorporate user’s provenance interest into the capture query
l Filter successful / failed assignments upfront (static analysis)
l Output is a query returning the edge relation of the graph



Conclusions

l Factorization
l Program structure determines factorization

l Approximate Summarization of Why-not Provenance
l Use patterns to summarize provenance
l Use sampling to generate such summaries for very large why-not
provenance graphs



Future work

l Expressiveness
l Support aggregation and recursion

l Efficiency
l Leverage factorized DB techniques for aggregates?
l Factorizing missing answers (complement representations)?

l Going beyond SQL / Datalog as the target language
l What specialized algorithms & data structures would be
beneficial?
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Summarizing Provenance



Motivation (Example)

l Airbnb (bed and breakfast)

r1: AL(N,R) :- L(I, N, T, R,queen anne, E), A(I, 2016-11-09, P)

Why no shared 
room exists?

“ What are avaliable listings and the room types in Queen Anne on Nov 9th, 2016? ”



Motivation (Example)

Why-not provenance
(instance-based)

All derivations Single derivation

Why-not [Huang et al. VLDB 2008]
Artemis [Herschel et al. VLDB 2009]

Y! [Wu et al. SIGCOMM 2014]

Not scalable Not comprehensive



r1: AL(N,R) :- L(I, N, T, R,queen anne, E), A(I, 2016-11-09, P)

Motivation (Example)

Why no shared 
room exists?

= 2160

~15"1020 deriva+ons over full dataset (~ 1.4M)



Motivation (Example)

Why no shared 
room exists?

r1: AL(N,R) :- L(I, N, T, R,queen anne, E), A(I, 2016-11-09, P)

The listing ‘central place’ has a shared 
room which is not available at $130



Motivation (Example)

Why no shared 
room exists?

“ All shared rooms of apartments in Queen Anne are 
not available at any price on Nov 9th, 2016 ”

r1: AL(N,R) :- L(I, N, T, R,queen anne, E), A(I, 2016-11-09, P)



Summarizing Provenance

l Goals
o Concise (small size of explanations)
o Complete (covering all provenance)
o Informative (providing new insights)

l Challenge
o Fullfilling all 3 elements at the same time
o Computing summaries using full why-not provenance



Summarizing Provenance

l Computing top-k summaries using patterns
o Concise explanations
o Meaningful (semantically)

l Integrating sampling into provenance capture process
o Unbiased
o Computing representative patterns
o Calculating close enough approximate completeness of patterns



Summarizing Provenance

l What are patterns?

r1(N, shared, I, apt, E, P) (T,F)



Summarizing Provenance

l What are patterns?

r1(near SpaceNeedle, shared, 8575, apt, lower, 40)

r1(central place, shared, 8403, apt, east, 40)

r1(near SpaceNeedle, shared, 8575, apt, lower, 350)

r1(central place, shared, 8403, apt, east, 350)

r1(central place, shared, 8403, apt, east, 45)
…..

(T,F)r1(central place, shared, 8403, apt, east, 130)

(T,F)
(T,F)
(T,F)

(T,F)
(T,F)

r1(N, shared, I, apt, E, P) (T,F)



Summarizing Provenance

l What are patterns?

r1(near SpaceNeedle, shared, 8575, apt, lower, 40)

r1(central place, shared, 8403, apt, east, 40)

r1(near SpaceNeedle, shared, 8575, apt, lower, 350)

r1(central place, shared, 8403, apt, east, 350)

r1(central place, shared, 8403, apt, east, 45)
…..

(T,F)r1(central place, shared, 8403, apt, east, 130)

(T,F)
(T,F)
(T,F)

(T,F)
(T,F)

r1(N, shared, I, apt, E, P) (T,F)



Summarizing Provenance

l What are provenance summaries?

…..

Summary

r1(N, shared, I, apt, E, P) (T,F)

r1(central place, shared, I, apt, E, P) (T,F)

r1(N, shared, I, condo, E, P) (T,F)

r1(N, shared, I, apt, E, 130) (F,T)

r1(N, shared, I, house, east, P) (F,F)

r1(N, shared, I, house, E, 350) (T,F)
…..

…..

…..

…..

k

k



Summarizing Provenance

l Quality metrics
o Completeness (cp): fraction of provenance covered by a pattern

≼(T,F)r1(central place, shared, 8403, apt, east, 130) r1(N, shared, I, apt, E, P) (T,F)



Summarizing Provenance

l Quality metrics
o Completeness (cp): fraction of provenance covered by a pattern
o Informativeness (info): degree of new information from a pattern

r1(N, shared, I, apt, E, P) (T,F)

Why no shared 
room exists?

r1(N, shared, I, R, E, P) (T,F)>



Summarizing Provenance

l How to compute summaries
o Heuristic using a sample of why-not provenance

Q(A) :- R(A,B), ¬ S(B)

Summarization 
process

Input

Size of the summary (k)

Provenance 
summary



Summarizing Provenance

Sampling Why-not Provenance Generating 
Patterns

Measuring 
Quality

Selecting 
top-k

Summarization process

l How to compute summaries



Summarizing Provenance

l Sampling why-not provenance
o Generating a sample that is equivalent to uniform random sample

o Without computing full why-not provenance

o Batch sampling: generating a query that returns an unbiased sample
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Summarizing Provenance

l Generating patterns
o LCA (Lowest Common Ancestor)

Interpretable and Informative Explanations of Outcomes [Gebaly et al. PVLDB 2014]
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Summarizing Provenance

l Measuring quality and selecting top-k patterns

A B
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Experiments



Experiments

l Performance of computing summaries
l Quality of summaries
l Comparison with other approaches

l Datasets
o 4 real-world datasets
o TPCH

l Queries
o Single rule through multiple rules
o Negation and comparisons

Approximate summaries for why and why-not provenance (extended version) [Lee et al. https://arxiv.org/abs/2002.00084 2020]



Experiments

l Computing summaries for ~1050 derivations

12 variables + 6 goals + negation 13 variables + 4 goals + multiple rules



Experiments

l Generating high-quality summaries

[Completeness comparison] [Quality metric error caused by sampling]


