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My Research

New abstractions, algorithms, and software systems
to “democratize” ML-based data analytics from
a data management/systems standpoint

Democratization = -Yystem Efficiency Human Efficiency
) (Reduce costs) (Improve productivity)
s B

Practical and scalable data systems for ML analytics

Inspired by relational database systems principles

Exploit insights from learning theory and optimization theory
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Running Example for ML over Joins

ML Task: Classify if a customer will churn or not
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Running Example for ML over Joins

ML Task: Classify if a customer will churn or not

AMERICAN FAMILY

M. Customers Foreign Key Employers
1 Yes Female 33 AMIN AMZN WA 136b
2 No Male 51  GOOG GOOG CA 89b
3 Yes Other 46 GOOG MSFT WA 85b
4 No Female 27  MSFT

More features!

More joins possible, e.g., with neighborhood data, weather data, etc.
Materializing such joins can blow up the data, even by over 10x!
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ORION: Factorized ML

Insight: Decompose ML computations and push them down through joins

Generalized Linear Models (GLMs) solved
using (batch) gradient descent methods

VLw) =YL, g(w'x;,y; X = [Xc¢ Xg]

Focus:

1 full iteration requires 2 scans of Employers, 1 scan of Customers

Challenges Tackled: Scalability; developability
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ORION: Implementations

Prototyped on PostgreSQL with UDAFs (MADLib style)
Distributed prototype with MapReduce on Hive & Spark (MLLib style)
Extended to Naive Bayes, k-means clustering, decision trees as R package

- Microsoft Loé;éBlox Google

(Web security) (Retail) (Ads)

Explored for
production use cases:

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015
Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. VLDB 2015
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Q: Can we avoid manual rewriting of each ML algorithm
and “automate” factorized ML on top of ML tools?
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Bulk LA-based ML Algorithms

Ordinary Least Squares linear regression with normal equations

Input: Regular matrix 71", Y, w
w = ginv(crossprod(7T))(TTY)

Logistic regression with BGD; works for L-BFGS and Conjugate Gradient too

Input: Regular matrix 7', Y, w, o

for 2 in 1 : max_iter do
w=w+ax(TT(Y/(1+ exp(Tw))))

end

Towards Linear Algebra over Normalized Data. VLDB 2017
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Framework of algebraic rewrite rules for many LA operations

Left Matrix Multiplication: Tw — Swg + K(Rwpg)

GLMs, K-means clustering, NMF, etc. automatically factorized
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Automatically Factorized ML in MORPHEUS

Input: Regular matrix T, Y, w, «
for 2 in 1 : max_iter do

| w=w+ax(TT(Y/(1+exp(Tw))))
end
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Automatically Factorized ML in MORPHEUS

Input: Regular matrix 7', Y, w, o
for 2 in 1 : mazx_iter do

| w=w+ax(T7(Y/(1+exp(Tw))))
end

T=(5K,R) l MORPHEUS

Input: Normalized matrix (S, K,R), Y, w, «
for + in 1: max_iter do
P = (Y/(1+ exp(Swl|l :ds, |+
K(Rwlds +1:ds + dg,]))))"
w=w+ ax*x|[PS,(PK)R]
end
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LA Operations Factorized in MORPHEUS

Table 1: Operators and functions of linear algebra handled in this paper over a normalized matrix 7.

Op Type Name Expression Output Type | Parameter X or x | Factorizable
Arithmetic Op
(@ =+,—,%,/,", etc) TOozxorz@T A scalar
Element-wise Transpose T Normalized N/A
Scalar Op Scalas ; Matrix
calar Function
(e.g., log, exp, sin) f(T) Parameters for f
Row Summation rowSums( 7') Column Vector
Aggregation Column Summation colSums(T) Row Vector N/A Yes
Summation sum(7T") Scalar
Left Multiplication TX (ds + dr) X dx matrix
Right Multiplication XT nx X ng matrix
Multiplication Cross-product crossprod( 7T) /A
Inversion Pseudoinverse ginv(T) i{/Iegtu'lar /
; : : atrix
Element-wise Arithmetic Op XoTorToX ns x (ds + dp) matrix No

Matrix Op

(® — +7 _7*7/7A7 etc)

Towards Linear Algebra over Normalized Data. VLDB 2017
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Snapshot of Empirical Results

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine

S5: Ratings S: Listings
R1: Users aExpedid” R1: Hotels
Rz2: Businesses R2: Search details
S 30 B Materialized
f,,i 22.5 Il Morpheus @
BRI
o
Df:i 7.5 R G
0
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Snapshot of Empirical Results

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine

S5: Ratings S: Listings
aExpedicr R1: Hotels
R2: Search details

Log.Reg. Lin.Reg. K-Means NMF Log.Reg. Lin.Reg. K-Means NMF
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When is MORPHEUS not likely to be beneficial?
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Customers Employers
Case 1: | | | | e
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When is MORPHEUS not likely to be beneficial?

Short Answer: When the join(s) do not introduce much redundancy

Customers Employers
Case 1: | | | | e
AMZN AMZN
Fact table is not much taller G00s
than dimension table(s)
. Customers Employers
Case 2: T
Dimension table has much fewer B ==

GOOG

features than fact table

Case 3: MLPs do not have much computational redundancy (anyway)
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MORPHEUS: Implementations and Extensions

Library released for both R and Python NumPy
Supports star schemas for many LA ops; snowflakes can be reduced to star
Some data cleaning/prep ops also factorized

?. Avito GO g|e

MORPHEUSFI: Second-order feature interactions in Morpheus

MORPHEUSFLOW: “Lazy join” for SGD in TensorFlow
TOC: Generalized data compression for SGD
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TRINITY: MORPHEUS Meets Oracle GraalVM

Goal: Automate Morpheus itself to many PLs in a unified way

Exploit GraalVM, an industrial-strength polyglot compiler +

|dea: . . .
runtime for data science workloads (R, Py, Javascript, etc.)

World without Trinity

New PL: New Optimization:

/v:Optlj R R
r

Js:: :OptZ [ Opt ]i’
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TRINITY: MORPHEUS Meets Oracle GraalVM

Goal: Automate Morpheus itself to many PLs in a unified way

Exploit GraalVM, an industrial-strength polyglot compiler +

|dea: . . .
runtime for data science workloads (R, Py, Javascript, etc.)
World without Trinity World with Trinity
New PL/' ( Optl * New Optimization: R New PL: New Optimization:
. ) __—r
JS—™ (opr2 Opt JS_’[ MatrixLib ] { opt H MorphEUSDSLJ
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TRINITY: MORPHEUS Meets Oracle GraalVM

Goal: Automate Morpheus itself to many PLs in a unified way

Exploit GraalVM, an industrial-strength polyglot compiler +

|dea: . . .
runtime for data science workloads (R, Py, Javascript, etc.)
World without Trinity World with Trinity
New PL/' ( Optl * New Optimization: R New PL: New Optimization:
JS—™ (opr2 Opt JS_’[ MatrixLib ] [ opt H MorphEUSDSLJ

Learn more about Trinity from David Justo at 3:30pm today!
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Roadblocks for Factorized ML

Observation: Factorized ML yet to have big practical impact on any path. :-/

Reason 1: Applicability to business-critical ML algorithms limited
Tree ensembles rule tabular data; factorized ML gains marginal there
GLMs, clustering, etc. often not big bottleneck in real-world pipelines

Reason 2: Implementation effort to make it practical still non-trivial
Orion-style: UDFs too complex to implement/maintain on RDBMS/Spark
Morpheus-style: ML not always written as LA scripts; hidden C++ callouts
Trinity-style: Likely promising; over the wall at Oracle now! :)
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