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end-to-end process of building and deploying ML applications
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Practical and scalable data systems for ML analytics


Inspired by relational database systems principles


Exploit insights from learning theory and optimization theory

+Democratization    =
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2 No Male 51 GOOG
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EmpID State Revenue
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Explored for 

production use cases: (Web security) (Retail) (Ads)

Prototyped on PostgreSQL with UDAFs (MADlib style)


Distributed prototype with MapReduce on Hive & Spark (MLlib style)


Extended to Naive Bayes, k-means clustering, decision trees as R package 
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Q: Can we avoid manual rewriting of each ML algorithm


and “automate” factorized ML on top of ML tools?
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Case 3: MLPs do not have much computational redundancy (anyway)



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Some data cleaning/prep ops also factorized



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Some data cleaning/prep ops also factorized



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Some data cleaning/prep ops also factorized

MORPHEUSFI: Second-order feature interactions in Morpheus



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Some data cleaning/prep ops also factorized

MORPHEUSFI:

MORPHEUSFLOW:

Second-order feature interactions in Morpheus

“Lazy join” for SGD in TensorFlow



MORPHEUS: Implementations and Extensions

Towards Linear Algebra over Normalized Data. VLDB 2017

Enabling and Optimizing Non-linear Feature Interactions in Factorized Linear Algebra. SIGMOD 2019

Tuple-oriented Compression for Large-scale Mini-batch Stochastic Gradient Descent. SIGMOD 2019 22

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Some data cleaning/prep ops also factorized

MORPHEUSFI:

MORPHEUSFLOW:

TOC:

Second-order feature interactions in Morpheus

“Lazy join” for SGD in TensorFlow

Generalized data compression for SGD



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23

Automate Morpheus itself to many PLs in a unified wayGoal:



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23

Exploit GraalVM, an industrial-strength polyglot compiler + 
runtime for data science workloads (R, Py, Javascript, etc.) 

Idea:

Automate Morpheus itself to many PLs in a unified wayGoal:



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23

Exploit GraalVM, an industrial-strength polyglot compiler + 
runtime for data science workloads (R, Py, Javascript, etc.) 

Idea:

Automate Morpheus itself to many PLs in a unified wayGoal:

World without Trinity



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23

Exploit GraalVM, an industrial-strength polyglot compiler + 
runtime for data science workloads (R, Py, Javascript, etc.) 

Idea:

Automate Morpheus itself to many PLs in a unified wayGoal:

World without Trinity World with Trinity



TRINITY: MORPHEUS Meets Oracle GraalVM

Towards A Polyglot Framework for Factorized ML. VLDB 2021 23

Exploit GraalVM, an industrial-strength polyglot compiler + 
runtime for data science workloads (R, Py, Javascript, etc.) 

Idea:

Automate Morpheus itself to many PLs in a unified wayGoal:

World without Trinity World with Trinity

Learn more about Trinity from David Justo at 3:30pm today!
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Introducing ML over Joins4m

Outline

Roadblocks and Musings4m

Orion: Factorized ML4m

Morpheus and Extensions10m
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Observation: Factorized ML yet to have big practical impact on any path. :-/

Reason 1: Applicability to business-critical ML algorithms limited


Tree ensembles rule tabular data; factorized ML gains marginal there


GLMs, clustering, etc. often not big bottleneck in real-world pipelines

Reason 2: Implementation effort to make it practical still non-trivial


Orion-style: UDFs too complex to implement/maintain on RDBMS/Spark


Morpheus-style: ML not always written as LA scripts; hidden C++ callouts


Trinity-style: Likely promising; over the wall at Oracle now! :)



https://tinyurl.com/MLSystemsBook

Plug: First Textbook on ML Systems
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https://tinyurl.com/MLSystemsBook


https://adalabucsd.github.io


arunkk@eng.ucsd.edu

github.com/ADALabUCSD @TweetAtAKK

ACKS:

mailto:arunkk@eng.ucsd.edu
http://github.com/ADALabUCSD

