Factorized Machine Learning: Paths and Roadblocks

JACOBS SCHOOL OF ENGINEERING Computer Science and Engineering

Factorized Databases Workshop

Arun Kumar

UC San Diego HALICIOĞLU DATA SCIENCE INSTITUTE

Aug 3, 2022

amazon FACEBOOK Google Microsoft

атадоп ғасевоок

Healthcare

Insurance

Sciences

2

атадоп ғасевоок

Healthcare

Insurance

\$ 38 billion in 2019*

*International Data Corporation

Google Microsoft

Sciences

\$ 500 billion by 2025*

2

FACEBOOK amazon

MAYO CLINIC Healthcare

Insurance

\$ 38 billion in 2019*

dmlc XGBoost Spark ML

TensorFlow O PyTorch

Google Microsoft

Sciences

\$ 500 billion by 2025*

*International Data Corporation

FACEBOOK amazon

MAYO CLINIC Healthcare

Insurance

\$ 38 billion in 2019*

dmlc XGBoost Spack ML

TensorFlow O PyTorch

Google Microsoft

Sciences

\$ 500 billion by 2025*

Microsoft amazon Google

*International Data Corporation

FACEBOOK amazon

MAYO CLINIC Healthcare

Insurance

\$ 38 billion in 2019*

Still, fundamental <u>efficiency and usability bottlenecks</u> in the

Google Microsoft

Sciences

\$ 500 billion by 2025*

end-to-end process of building and deploying ML applications

*International Data Corporation

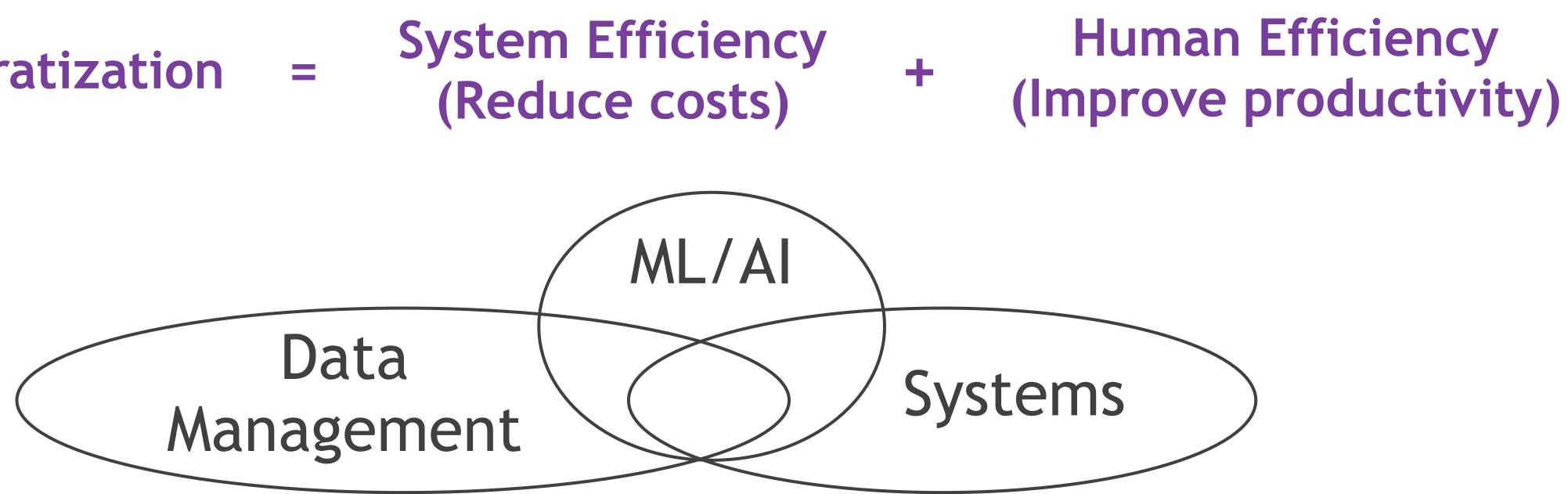
New abstractions, algorithms, and software systems to "democratize" ML-based data analytics from a data management/systems standpoint

System Efficiency Democratization = (Reduce costs)

New abstractions, algorithms, and software systems to "democratize" ML-based data analytics from a data management/systems standpoint

> Human Efficiency (Improve productivity)

Democratization



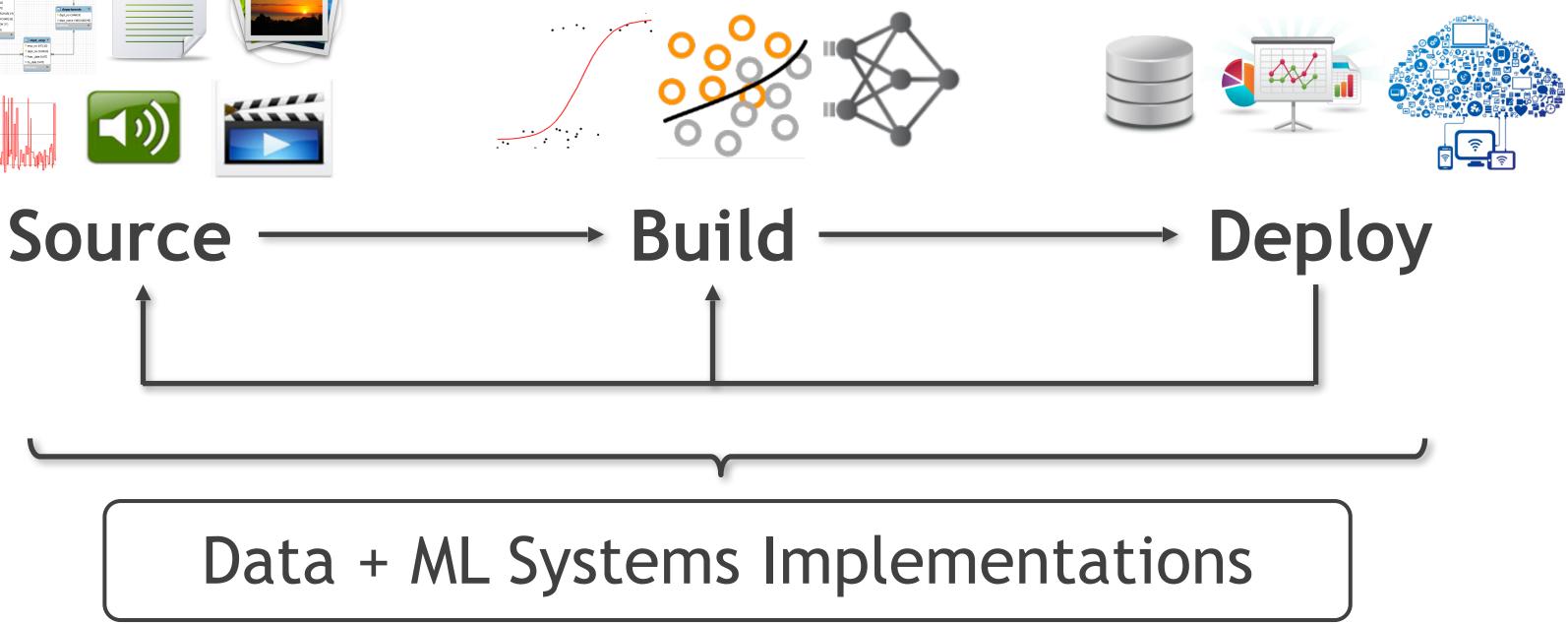
New abstractions, algorithms, and software systems to "democratize" ML-based data analytics from a data management/systems standpoint

- System Efficiency Human Efficiency **Democratization** = (Improve productivity) (Reduce costs)
 - Practical and scalable <u>data systems for ML analytics</u>
 - Inspired by *relational database systems* principles
 - Exploit insights from *learning theory* and *optimization theory*

New abstractions, algorithms, and software systems to "democratize" ML-based data analytics from a data management/systems standpoint

End-to-End ML Application Lifecycle

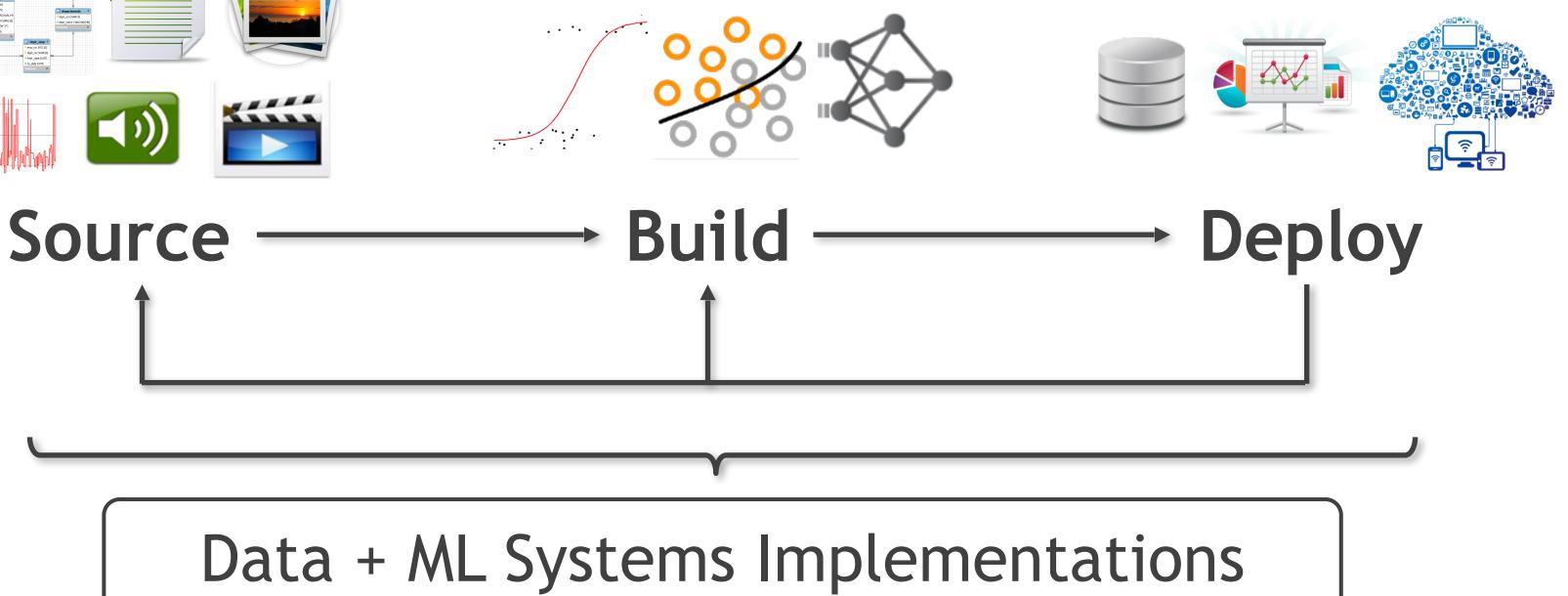
Data Scientist/ ML Engineer



https://ADALabUCSD.github.io

End-to-End ML Application Lifecycle

Data Scientist/ **ML Engineer**



Research Approach

Abstract key steps

Formalize computation

Automate grunt work

Optimize execution

https://ADALabUCSD.github.io

Outline

Introducing ML over Joins

Orion: Factorized ML

Morpheus and Extensions

Roadblocks and Musings

4m Introducing ML over Joins 4m Orion: Factorized ML 10m Morpheus and Extensions 4m Roadblocks and Musings

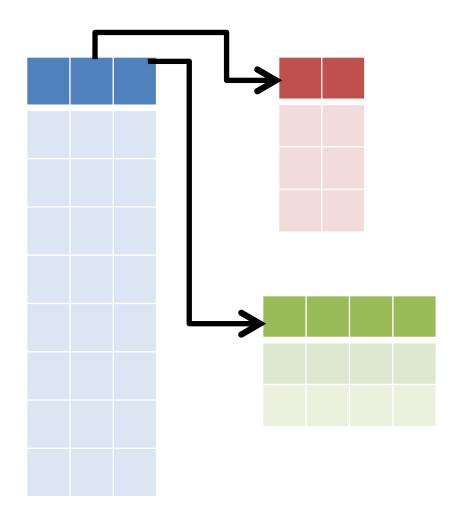
Outline

6

- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

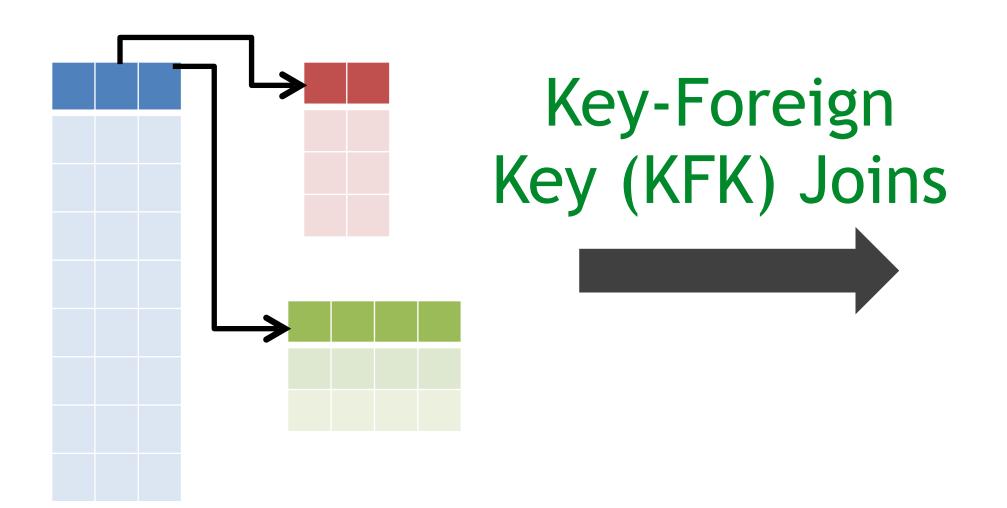
- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

$$\Rightarrow$$



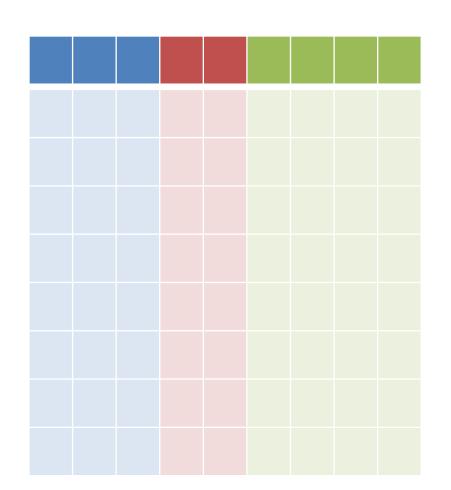
- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

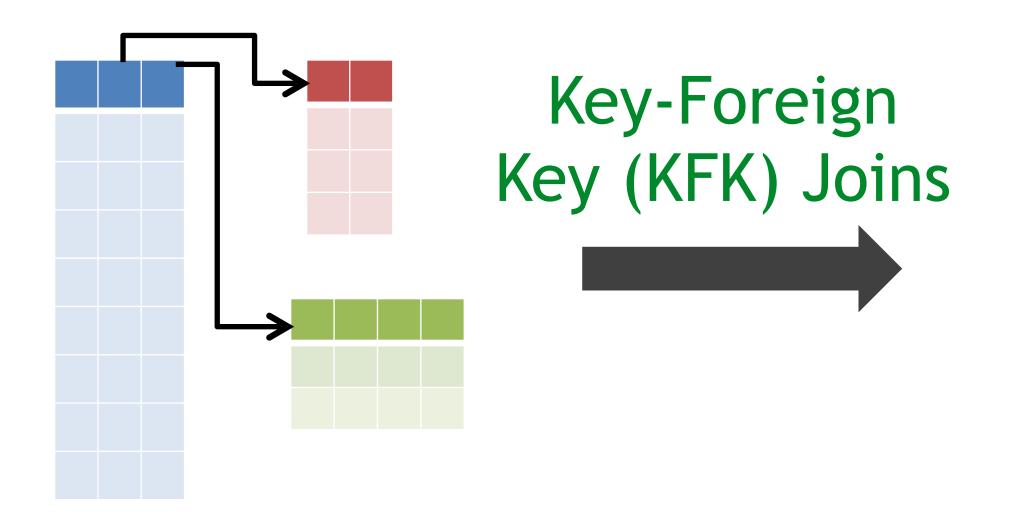
$$\Rightarrow$$



- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

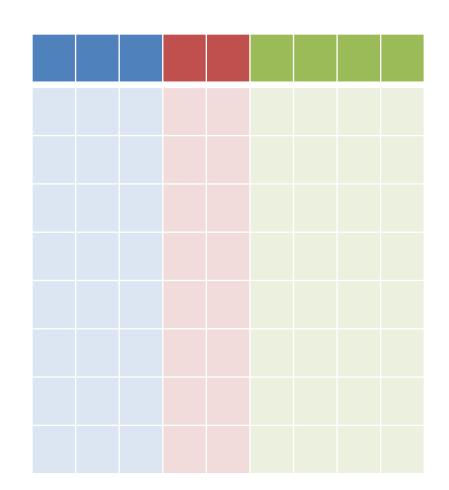
$$\Rightarrow$$

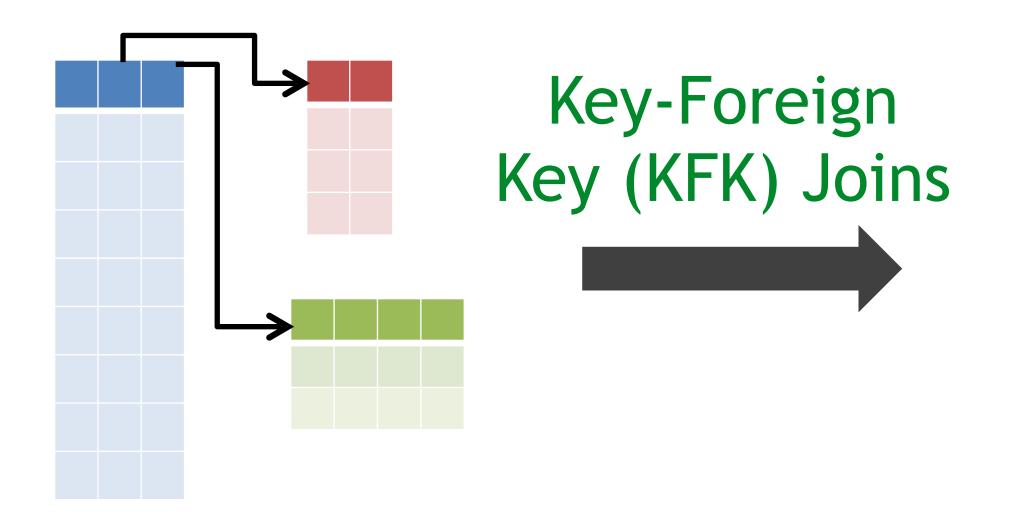




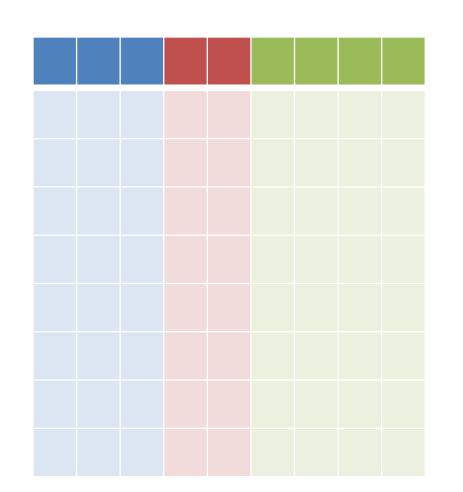
- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

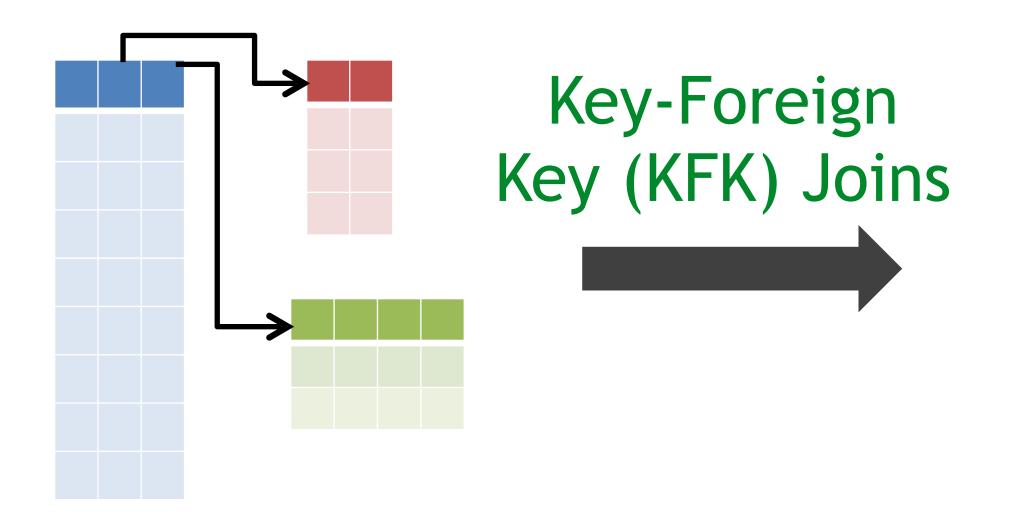
$$\Rightarrow$$





- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

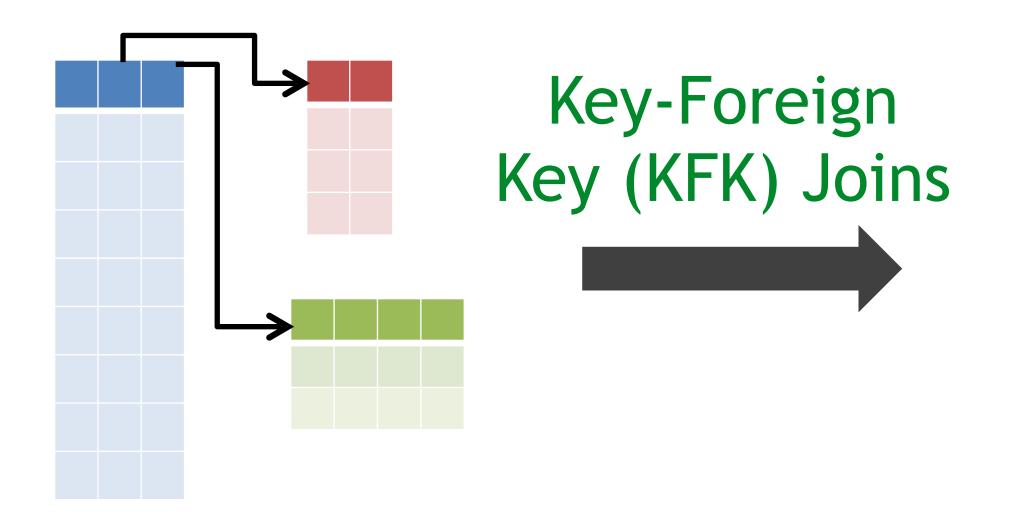




- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

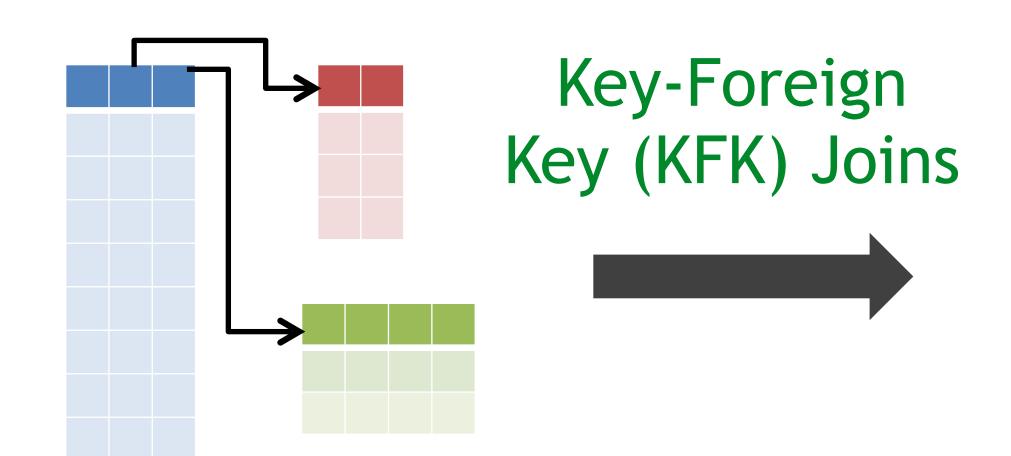
Materialize join output



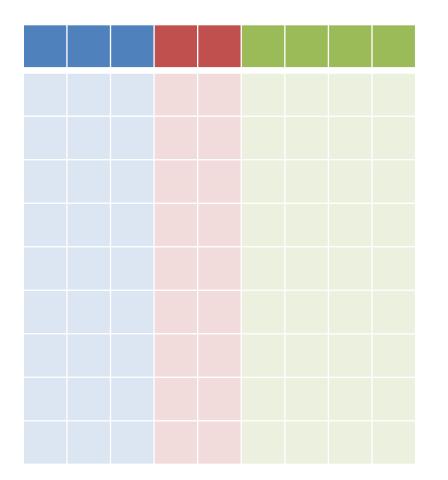


- A fundamental bottleneck in feature engineering on structured data:
 - ML toolkits assume single-table inputs

Materialize join output

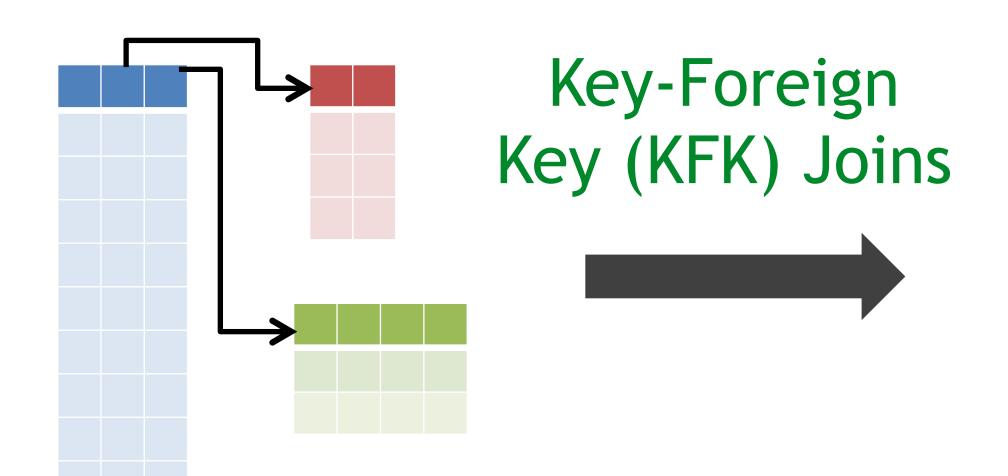


ML over Joins: Overview

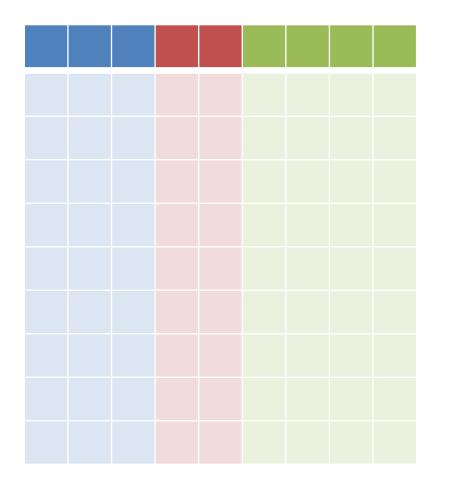




Avoid Joins Physically **ORION, MORPHEUS**

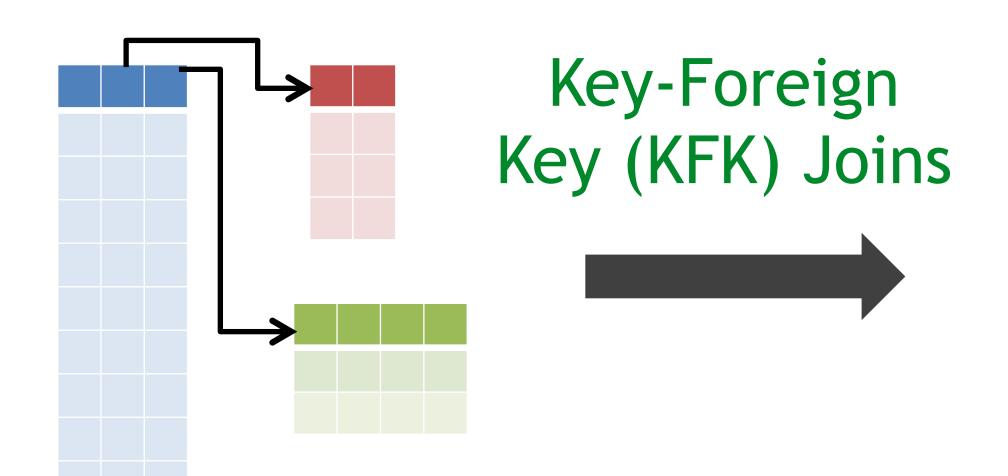


ML over Joins: Overview

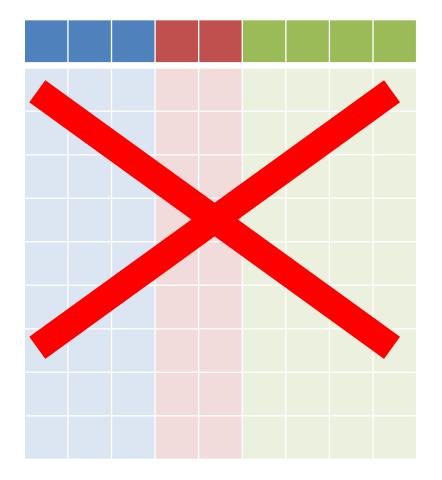




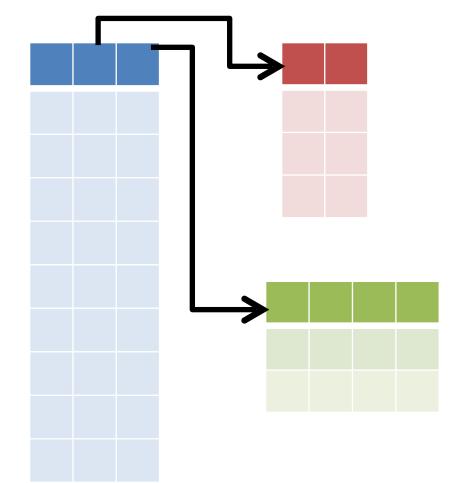
Avoid Joins Physically **ORION, MORPHEUS**



ML over Joins: Overview



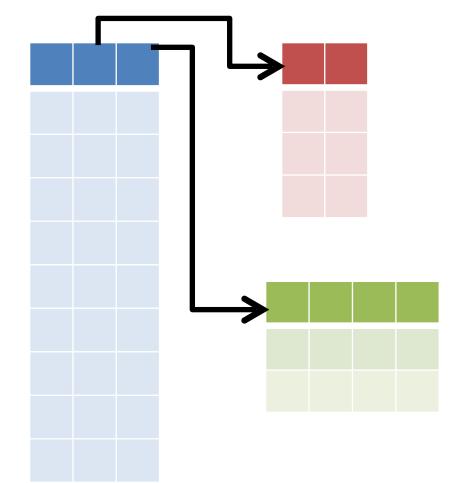




ML over Joins: Overview

ORION, MORPHEUS



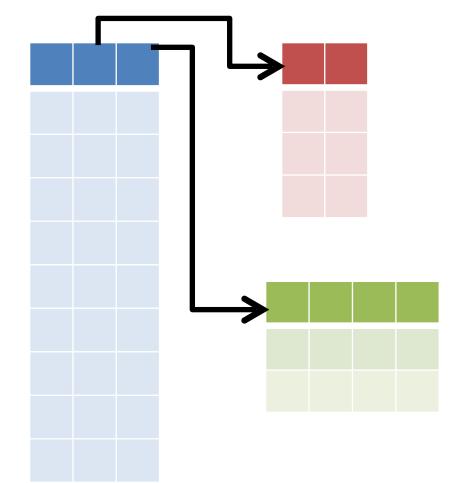


ML over Joins: Overview

ORION, MORPHEUS

Runs faster, same accuracy

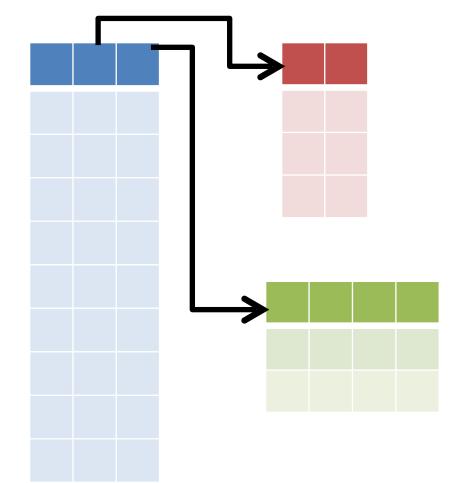




ML over Joins: Overview

ORION, MORPHEUS

Runs faster, same accuracy



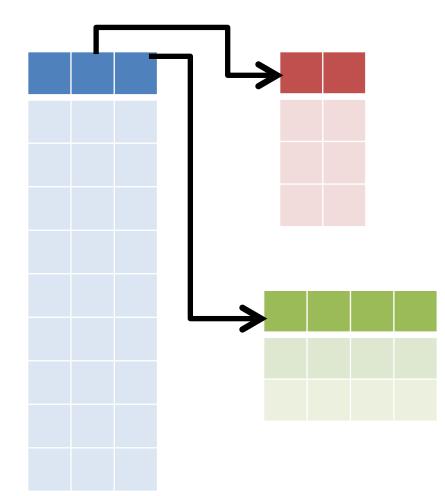
ML over Joins: Overview

ORION, MORPHEUS

Runs faster, same accuracy

- System efficiency

Avoid Joins Logically



ML over Joins: Overview

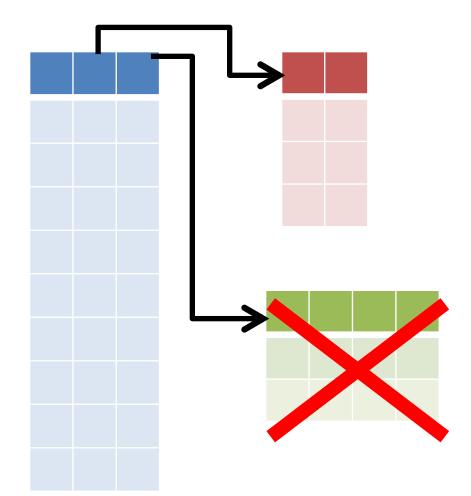
ORION, MORPHEUS

Runs faster, same accuracy

HAMLET, HAMLET++

System efficiency

Avoid Joins Logically



ML over Joins: Overview

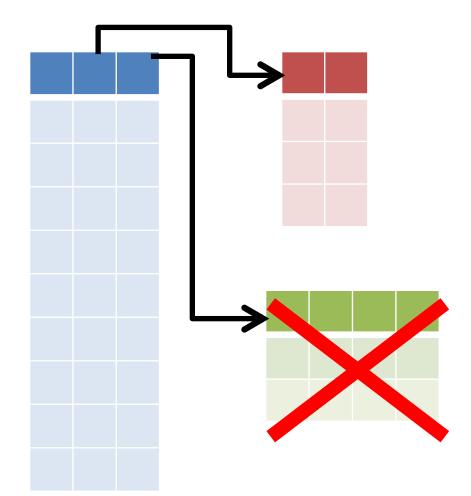
ORION, MORPHEUS

Runs faster, same accuracy

HAMLET, HAMLET++

System efficiency

Avoid Joins Logically



ML over Joins: Overview

ORION, MORPHEUS

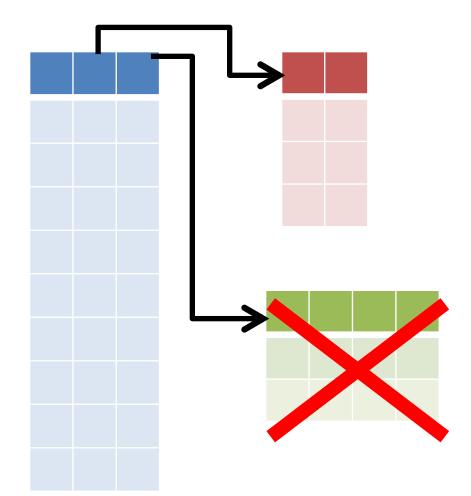
Runs faster, same accuracy

HAMLET, HAMLET++

Even faster, similar accuracy

System efficiency

Avoid Joins Logically



ML over Joins: Overview

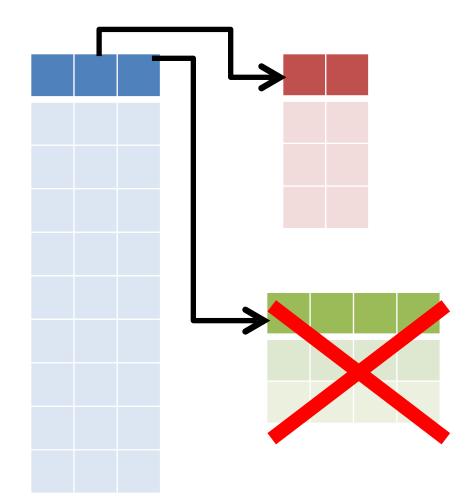
ORION, MORPHEUS

Runs faster, same accuracy

HAMLET, HAMLET++

Even faster, similar accuracy

Avoid Joins Logically



ML over Joins: Overview

ORION, MORPHEUS

Runs faster, same accuracy

HAMLET, HAMLET++

Even faster, similar accuracy

Running Example for ML over Joins

AN FAN JRANC		Custome	rs	Forei	gn Key	E	mploye	ers
CID	Churn?	Gender	Age	EmpID		EmpID	State	Revenue
1	Yes	Female	33	AMZN		AMZN	WA	136b
2	No	Male	51	GOOG		GOOG	CA	89 b
3	Yes	Other	46	GOOG		MSFT	WA	85b
4	No	Female	27	MSFT		•••	•••	•••
•••	•••	•••	•••	•••				

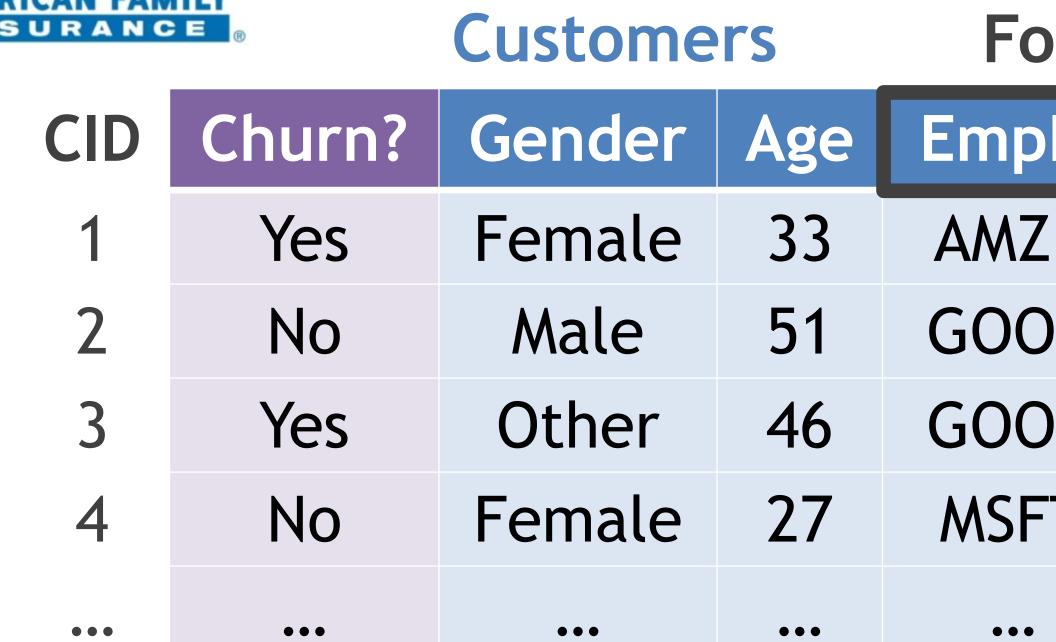
ML Task: Classify if a customer will churn or not

Running Example for ML over Joins

JRANC		Custome	rs	Forei	gn Key	E	imploye	ers
CID	Churn?	Gender	Age	EmpID		EmpID	State	Revenue
1	Yes	Female	33	AMZN		AMZN	WA	136b
2	No	Male	51	GOOG		GOOG	CA	89 b
3	Yes	Other	46	GOOG		MSFT	WA	85b
4	No	Female	27	MSFT		•••	•••	•••
•••	•••	•••	•••	•••		Mo	ore feat	tures!

ML Task: Classify if a customer will churn or not

Running Example for ML over Joins



More joins possible, e.g., with neighborhood data, weather data, etc. Materializing such joins can blow up the data, even by over 10x!

ML Task: Classify if a customer will *churn* or not

orei	gn Key	Employers					
DD		EmpID	State	Revenue			
ZN		AMZN	WA	136b			
)G		GOOG	CA	89 b			
)G		MSFT	WA	85 b			
-T		•••	•••	•••			
	More features!						

ICULUICS:

4m Introducing ML over Joins 4m Orion: Factorized ML 10m Morpheus and Extensions 4m Roadblocks and Musings

Outline

Insight: Decompose ML computations and <u>push them down</u> through joins

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015

$\mathbf{X} \equiv [\mathbf{X}_{\mathbf{C}} \ \mathbf{X}_{\mathbf{E}}]$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

$\nabla L(w) = \sum_{i=1}^{N} g(w^{T} \mathbf{x}_{i}, \mathbf{y}_{i}) \mathbf{x}_{i} \quad \mathbf{X} \equiv [\mathbf{X}_{C} \mathbf{X}_{E}]$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

$\nabla L(w) = \sum_{i=1}^{N} g(w^{T} \mathbf{x}_{i}, \mathbf{y}_{i}) \mathbf{x}_{i} \quad \mathbf{X} \equiv [\mathbf{X}_{C} \mathbf{X}_{E}]$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

$\nabla L(w) = \sum_{i=1}^{N} g(w)$ $w^{T} \mathbf{X} = [w_{C}^{T} w_{E}^{T}]$

$$\mathbf{v}^{\mathrm{T}}\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{x} \equiv [\mathbf{X}_{\mathrm{C}} \mathbf{X}_{\mathrm{E}}]$$

 $\begin{bmatrix} \mathbf{X}_{\mathrm{C}} \\ \mathbf{X}_{\mathrm{E}} \end{bmatrix} = \mathbf{w}_{\mathrm{C}}^{\mathrm{T}}\mathbf{X}_{\mathrm{C}} + \mathbf{w}_{\mathrm{E}}^{\mathrm{T}}\mathbf{X}_{\mathrm{E}}$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015

 $\nabla L(w) = \sum_{i=1}^{N} g(w^{T} \mathbf{x}_{i}, \mathbf{y}_{i}) \mathbf{x}_{i} \quad \mathbf{X} \equiv [\mathbf{X}_{C} \mathbf{X}_{E}]$ $w^{\mathrm{T}}\mathbf{X} = [w^{\mathrm{T}}_{\mathrm{C}} w^{\mathrm{T}}_{\mathrm{E}}] \begin{bmatrix} \mathbf{X}_{\mathrm{C}} \\ \mathbf{X}_{\mathrm{E}} \end{bmatrix} = w^{\mathrm{T}}_{\mathrm{C}} \mathbf{X}_{\mathrm{C}} + w^{\mathrm{T}}_{\mathrm{E}} \mathbf{X}_{\mathrm{E}}$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015

 $\nabla L(w) = \sum_{i=1}^{N} g(w^{T} \mathbf{x}_{i}, \mathbf{y}_{i}) \mathbf{x}_{i} \qquad \mathbf{X} \equiv [\mathbf{X}_{C} \mathbf{X}_{E}]$ $w^{\mathrm{T}}\mathbf{X} = [w_{\mathrm{C}}^{\mathrm{T}} w_{\mathrm{E}}^{\mathrm{T}}] \begin{bmatrix} \mathbf{X}_{\mathrm{C}} \\ \mathbf{X}_{\mathrm{E}} \end{bmatrix} = w_{\mathrm{C}}^{\mathrm{T}} \mathbf{X}_{\mathrm{C}} + w_{\mathrm{E}}^{\mathrm{T}} \mathbf{X}_{\mathrm{E}}$

Insight: Decompose ML computations and push them down through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

$$\nabla \mathbf{L}(\boldsymbol{w}) = \sum_{i=1}^{N} g(\boldsymbol{v})$$
$$\boldsymbol{w}^{\mathrm{T}} \mathbf{X} = [\boldsymbol{w}_{\mathrm{C}}^{\mathrm{T}} \boldsymbol{w}_{\mathrm{E}}^{\mathrm{T}}]$$

1 full iteration requires 2 scans of Employers, 1 scan of Customers

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015

 $\begin{bmatrix} \mathbf{w}^{\mathrm{T}} \mathbf{x}_{i}, \mathbf{y}_{i} \end{bmatrix} \mathbf{x}_{i} \qquad \mathbf{X} \equiv \begin{bmatrix} \mathbf{X}_{\mathrm{C}} \ \mathbf{X}_{\mathrm{E}} \end{bmatrix}$ $\begin{bmatrix} \mathbf{X}_{\mathrm{C}} \\ \mathbf{X}_{\mathrm{E}} \end{bmatrix} = \mathbf{w}_{\mathrm{C}}^{\mathrm{T}} \mathbf{x}_{\mathrm{C}} + \mathbf{w}_{\mathrm{E}}^{\mathrm{T}} \mathbf{x}_{\mathrm{E}}$

Insight: Decompose ML computations and <u>push them down</u> through joins

Focus: Generalized Linear Models (GLMs) solved using (batch) gradient descent methods

$$\nabla \mathbf{L}(\boldsymbol{w}) = \sum_{i=1}^{N} g(\boldsymbol{w})$$
$$\boldsymbol{w}^{\mathrm{T}} \mathbf{X} = [\boldsymbol{w}_{\mathrm{C}}^{\mathrm{T}} \boldsymbol{w}_{\mathrm{E}}^{\mathrm{T}}]$$

- $\mathbf{W}^{\mathrm{T}}\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \mathbf{X} \equiv [\mathbf{X}_{\mathbf{C}} \mathbf{X}_{\mathbf{E}}]$ $\begin{bmatrix} \mathbf{X} \mathbf{C} \\ \mathbf{X} \mathbf{C} \end{bmatrix} = \mathbf{W}_{\mathbf{C}}^{\mathbf{T}} \mathbf{X}_{\mathbf{C}} + \mathbf{W}_{\mathbf{E}}^{\mathbf{T}} \mathbf{X}_{\mathbf{E}}$
- 1 full iteration requires 2 scans of Employers, 1 scan of Customers
 - **Challenges Tackled:** Scalability; developability

ORION: Implementations

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015 Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. VLDB 2015

ORION: Implementations

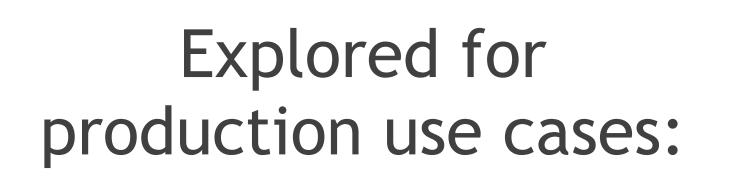
Prototyped on PostgreSe Distributed prototype with Map Extended to Naive Bayes, k-means

Learning Generalized Linear Models over Normalized Data. SIGMOD 2015 Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. VLDB 2015

- Prototyped on PostgreSQL with UDAFs (MADlib style)
- Distributed prototype with MapReduce on Hive & Spark (MLlib style)
- Extended to Naive Bayes, k-means clustering, decision trees as R package

ORION: Implementations

- Prototyped on PostgreSQL with UDAFs (MADlib style)
- Distributed prototype with MapReduce on Hive & Spark (MLlib style)
- Extended to Naive Bayes, k-means clustering, decision trees as R package



Learning Generalized Linear Models over Normalized Data. SIGMOD 2015 Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. VLDB 2015

LogicBlox Microsoft Google (Web security) (Ads) (Retail)

Q: Can we avoid <u>manual rewriting</u> of each ML algorithm and "automate" factorized ML on top of ML tools?

4m Introducing ML over Joins 4m Orion: Factorized ML 10m Morpheus and Extensions 4m Roadblocks and Musings

Outline

Goal: Automate factorized ML to many ML algorithms in a unified way

Idea:

Towards Linear Algebra over Normalized Data. VLDB 2017

Goal: Automate factorized ML to many ML algorithms in a unified way

Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Idea:

Factorized ML: Prior Work

Towards Linear Algebra over Normalized Data. VLDB 2017

Goal: Automate factorized ML to many ML algorithms in a unified way

Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Idea:

Factorized ML: Prior Work

ORION (GLMs) Stack 1

Towards Linear Algebra over Normalized Data. VLDB 2017

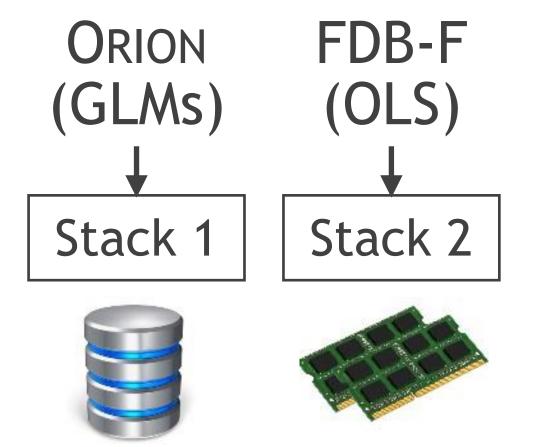
Goal: Automate factorized ML to many ML algorithms in a unified way

Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Goal: Automate factorized ML to many ML algorithms in a unified way

Idea: Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work



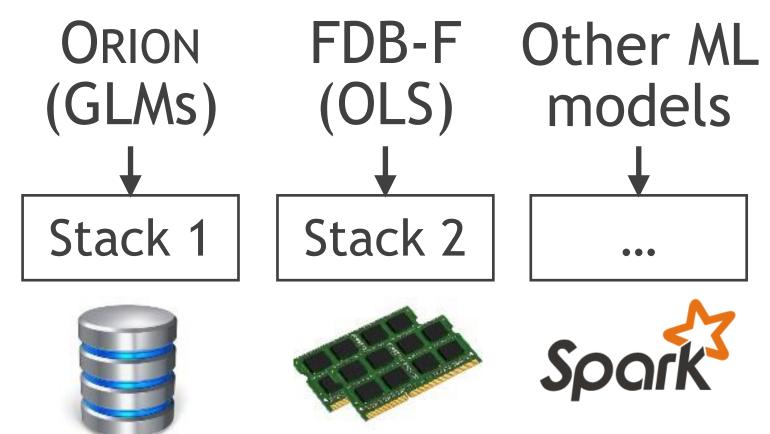
Towards Linear Algebra over Normalized Data. VLDB 2017

Ih fb

Goal: Automate factorized ML to many ML algorithms in a unified way

Idea: Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work



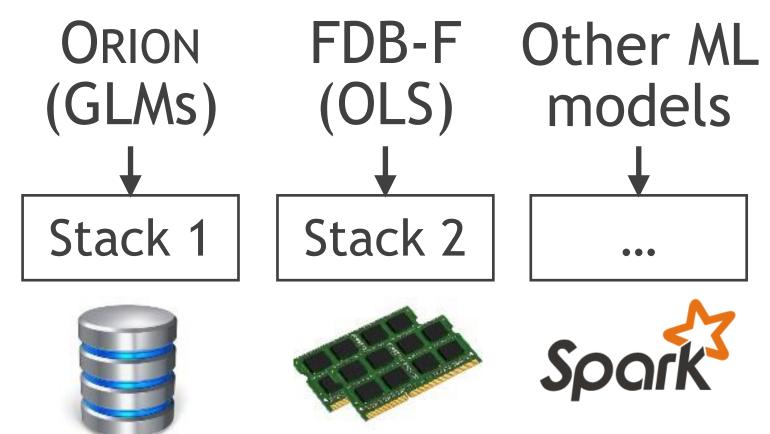
Towards Linear Algebra over Normalized Data. VLDB 2017

Ih fb

Goal: Automate factorized ML to many ML algorithms in a unified way

Idea: Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work



Towards Linear Algebra over Normalized Data. VLDB 2017

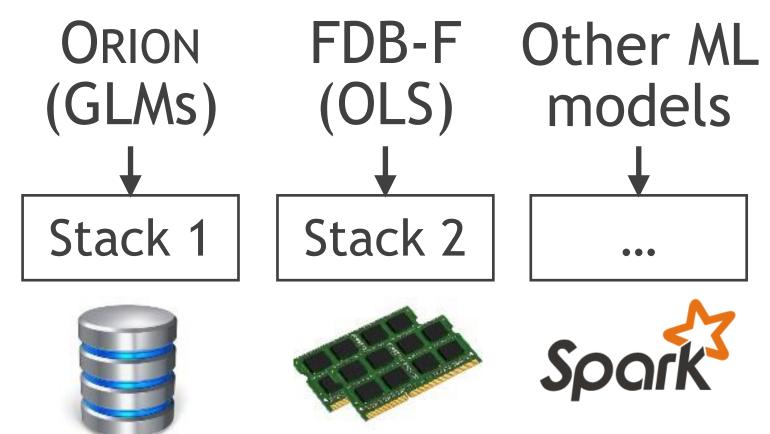
The MORPHEUS Approach

Ih fk

Goal: Automate factorized ML to many ML algorithms in a unified way

Idea: Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work



Towards Linear Algebra over Normalized Data. VLDB 2017

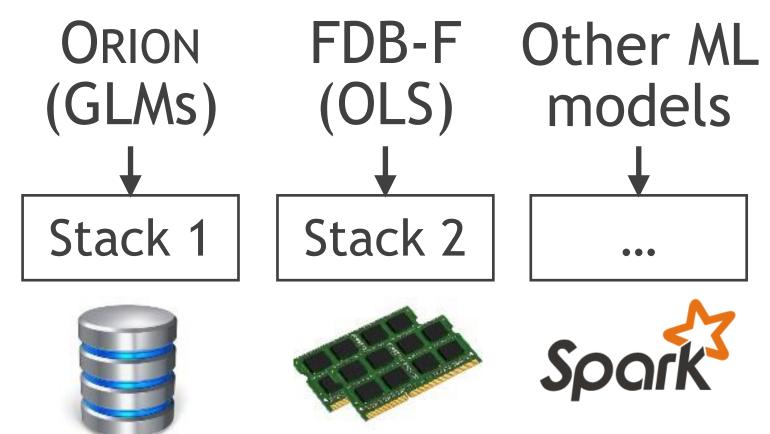
The MORPHEUS ApproachGLMsOLSK-MeansNMF

•••

Goal: Automate factorized ML to many ML algorithms in a unified way

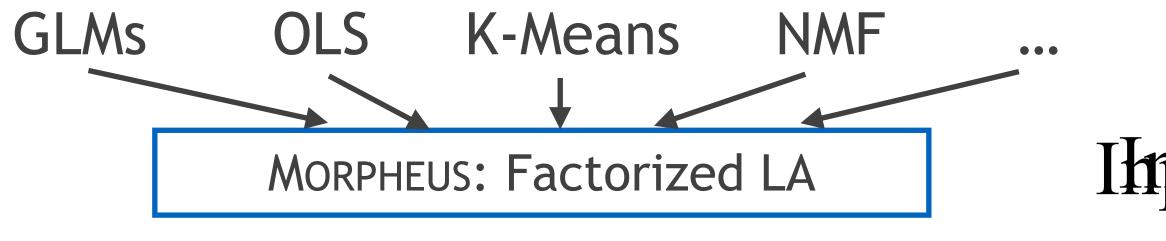
Many ML algorithms are bulk *linear algebra* (LA) programs Idea: Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work



Towards Linear Algebra over Normalized Data. VLDB 2017

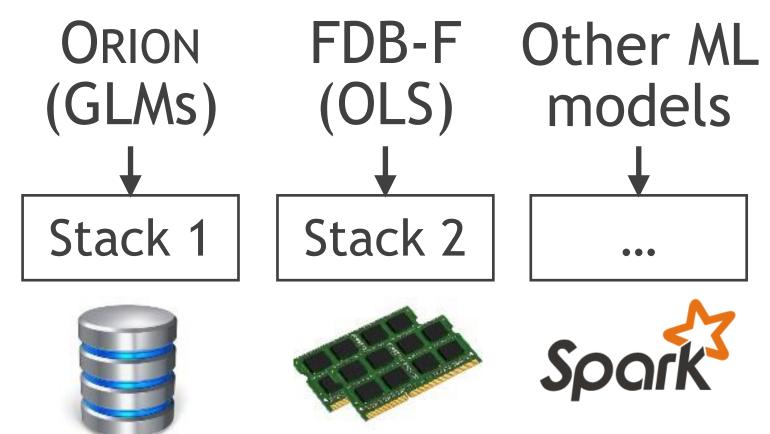
The MORPHEUS Approach

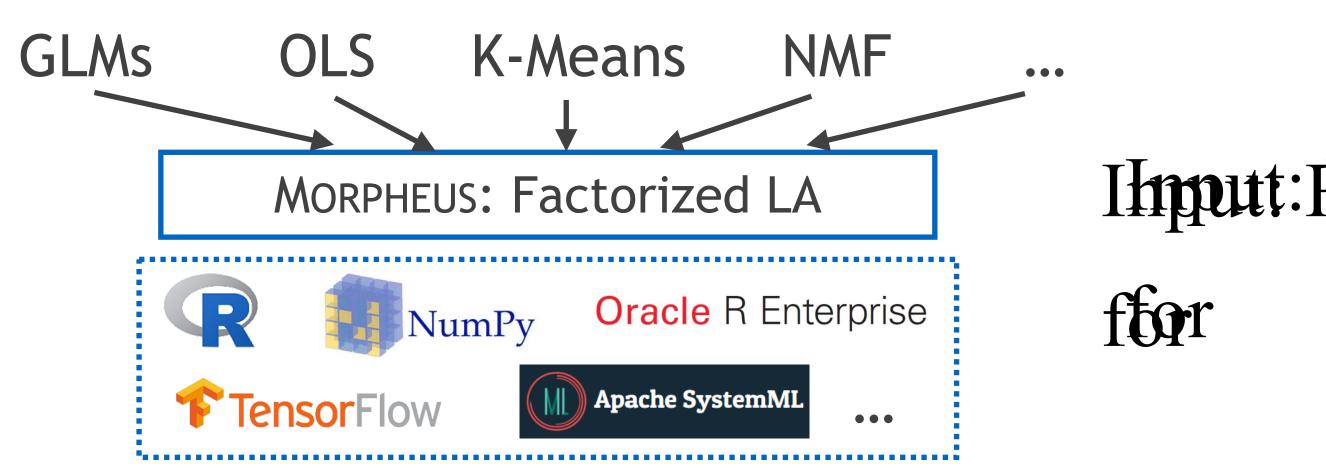


Goal: Automate factorized ML to many ML algorithms in a unified way

Idea: Many ML algorithms are bulk *linear algebra* (LA) programs Create a framework for rewrite rules for LA ops

Factorized ML: Prior Work





Bulk LA-based ML Algorithms

Bulk LA-based ML Algorithms

Ordinary Least Squares linear regression with normal equations

Input: Regular matrix T, Y, w $w = ginv(crossprod(T))(T^{\intercal}Y)$

Bulk LA-based ML Algorithms

Ordinary Least Squares linear regression with normal equations

Input: Regular matrix T, Y, w $w = ginv(crossprod(T))(T^{\intercal}Y)$

Logistic regression with BGD; works for L-BFGS and Conjugate Gradient too

Input: Regular matrix T, Y, w, α for i in $1 : max_iter$ do $| w = w + \alpha * (T^{\intercal}(Y/(1 + \exp(Tw))))$ end

Towards Linear Algebra over Normalized Data. VLDB 2017

MORPHEUS: High-level Architecture

MORPHEUS: High-level Architecture

Rewrite Rules for Factorized LA ops on an LA tool

Towards Linear Algebra over Normalized Data. VLDB 2017

MORPHEUS

MORPHEUS: High-level Architecture

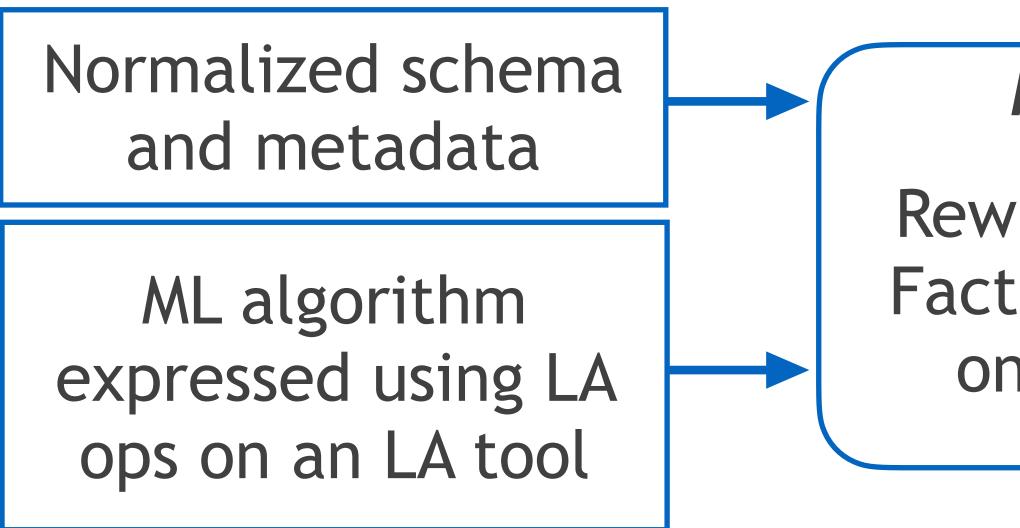
ML algorithm expressed using LA ops on an LA tool

Towards Linear Algebra over Normalized Data. VLDB 2017

MORPHEUS

Rewrite Rules for Factorized LA ops on an LA tool

MORPHEUS: High-level Architecture

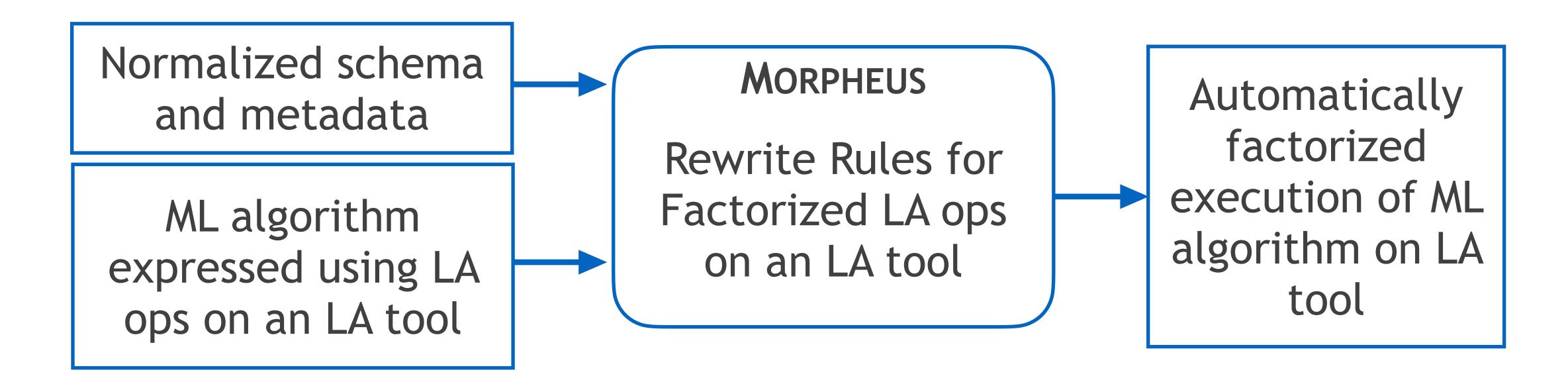


Towards Linear Algebra over Normalized Data. VLDB 2017

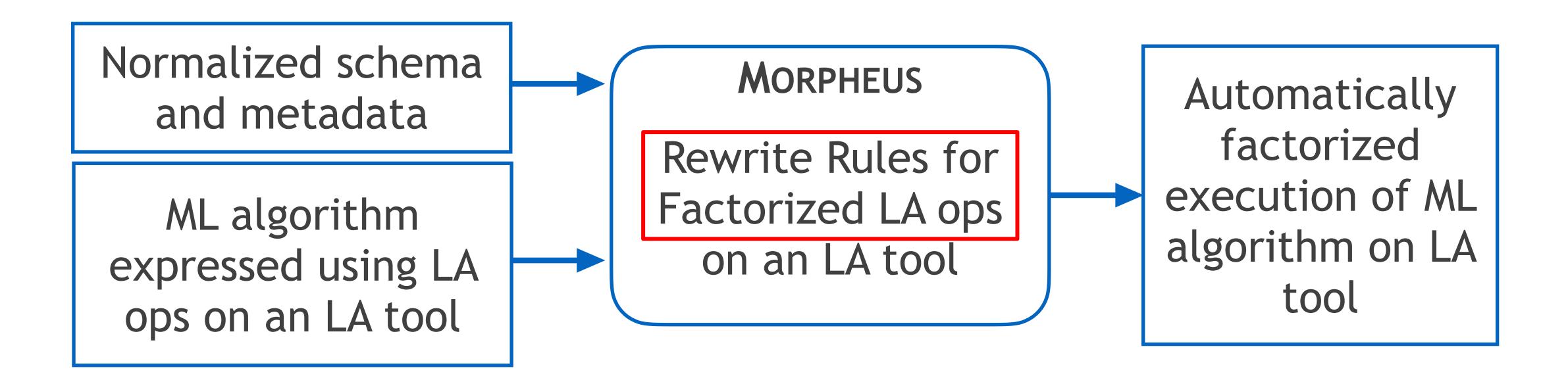
MORPHEUS

Rewrite Rules for Factorized LA ops on an LA tool

MORPHEUS: High-level Architecture



MORPHEUS: High-level Architecture



Oracle R Enterprise

New Abstraction: "Normalized Matrix" to represent join in LA

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Employers

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Customers Employers

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $X \equiv [X_S X_R] \qquad \text{Customers} \qquad \text{Employers}$

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $X \equiv [X_S X_R] \qquad \text{Customers}$ **Employers** $S_{n \times d_S}$

New Abstraction: "Normalized Matrix" to represent join in LA

 $X \equiv [X_S X_R] \qquad \text{Customers}$ $S_{n \times d_S}$

Towards Linear Algebra over Normalized Data. VLDB 2017

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Employers $R_{n_B \times d_B}$

New Abstraction: "Normalized Matrix" to represent join in LA

$X \equiv [X_S X_R] \qquad \text{Customers}$ $T_{n \times d}$ $S_{n \times d_S}$

Towards Linear Algebra over Normalized Data. VLDB 2017

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Employers $R_{n_B \times d_B}$

New Abstraction: "Normalized Matrix" to represent join in LA

 $\begin{aligned} \mathbf{T}(ID, X) &\leftarrow \pi(\mathbf{S}(ID, X_S, X_S)) \\ X &\equiv [X_S X_R] & \text{Custom} \\ T_{n \times d} & S_{n \times d} \end{aligned}$

$$\begin{array}{ll} (FK) \Join_{FK=RID} \mathbf{R}(RID, X_R)) \\ \text{ners} & \text{Employers} \\ d_S & R_{n_R \times d_R} \end{array}$$

New Abstraction: "Normalized Matrix" to represent join in LA

 $\begin{array}{ll} X \equiv [X_S X_R] & \mbox{Customers} & \mbox{Employe} \\ T_{n \times d} & \mbox{$S_{n \times d_S}$} & \mbox{$K_{n \times n_R}$} \end{array}$ $T_{n \times d}$



New Abstraction: "Normalized Matrix" to represent join in LA

$$\begin{split} \mathbf{T}(ID, X) &\leftarrow \pi(\mathbf{S}(ID, X_S, X_S)) \\ X &\equiv [X_S X_R] & \text{Custom} \\ T_{n \times d} & S_{n \times d} \end{split}$$

K

$$[i, j] = \begin{bmatrix} 1, & if & \mathbf{S}[i] \\ 0, & o/w \end{bmatrix}$$

New Abstraction: "Normalized Matrix" to represent join in LA

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $\begin{array}{ll} X \equiv [X_S X_R] & \mbox{Customers} & \mbox{Employers} \\ T_{n \times d} & \mbox{$S_{n \times d_S}$} & \mbox{$K_{n \times n_R}$} & \mbox{$R_{n_R \times d_R}$} \end{array}$

 $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$

New Abstraction: "Normalized Matrix" to represent join in LA

- $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $\begin{array}{ll} X \equiv [X_S X_R] & \mbox{Customers} & \mbox{Employers} \\ T_{n \times d} & \mbox{$S_{n \times d_S}$} & \mbox{$K_{n \times n_R}$} & \mbox{$R_{n_R \times d_R}$} \end{array}$ $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$
- Framework of <u>algebraic rewrite rules</u> for many LA operations

New Abstraction: "Normalized Matrix" to represent join in LA

Left Matrix Multiplication:

- $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $\begin{array}{ll} X \equiv [X_S X_R] & \mbox{Customers} & \mbox{Employers} \\ T_{n \times d} & \mbox{$S_{n \times d_S}$} & \mbox{$K_{n \times n_R}$} & \mbox{$R_{n_R \times d_R}$} \end{array}$ $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$
- Framework of <u>algebraic rewrite rules</u> for many LA operations

New Abstraction: "Normalized Matrix" to represent join in LA

 $X \equiv [X_S X_R]$ Customers $T_{n \times d}$

- $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Employers $S_{n \times d_S} \qquad K_{n \times n_R} \qquad R_{n_R \times d_R}$ $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$
- Framework of <u>algebraic rewrite rules</u> for many LA operations
 - Left Matrix Multiplication: $Tw \rightarrow Sw_S + K(Rw_R)$

New Abstraction: "Normalized Matrix" to represent join in LA

Framework of <u>algebraic rewrite rules</u> for many LA operations Left Matrix Multiplication:

Towards Linear Algebra over Normalized Data. VLDB 2017

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ $\begin{array}{ll} X \equiv [X_S X_R] & \mbox{Customers} & \mbox{Employers} \\ T_{n \times d} & \mbox{$S_{n \times d_S}$} & \mbox{$K_{n \times n_R}$} & \mbox{$R_{n_R \times d_R}$} \end{array}$ $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$

$$Tw \to Sw_S + K(Rw_R)$$

New Abstraction: "Normalized Matrix" to represent join in LA

 $X \equiv [X_S X_R]$ Customers $T_{n \times d}$

Framework of <u>algebraic rewrite rules</u> for many LA operations

 $\mathbf{T}(ID, X) \leftarrow \pi(\mathbf{S}(ID, X_S, FK) \bowtie_{FK=RID} \mathbf{R}(RID, X_R))$ Employers $S_{n \times d_S} \qquad K_{n \times n_R} \qquad R_{n_R \times d_R}$ $T = \begin{bmatrix} S & KR \end{bmatrix} \qquad K[i,j] = \begin{array}{c} 1, & \text{if } \mathbf{S}[i].FK = j \\ 0, & o/w \end{array}$

- Left Matrix Multiplication: $Tw \rightarrow Sw_S + K(Rw_R)$
- GLMs, K-means clustering, NMF, etc. *automatically* factorized
 - Towards Linear Algebra over Normalized Data. VLDB 2017

Towards Linear Algebra over Normalized Data. VLDB 2017

Input: Regular matrix T, Y, w, α for i in $1 : max_iter$ do $| w = w + \alpha * (T^{\intercal}(Y/(1 + \exp(Tw))))$ end

Towards Linear Algebra over Normalized Data. VLDB 2017

Input: Regular matrix T, Y, w, α for i in $1 : max_iter$ do $| w = w + \alpha * (T^{\intercal}(Y/(1 + \exp(Tw))))$ end

$T \equiv (S, K, R) \downarrow \text{Morpheus}$

Towards Linear Algebra over Normalized Data. VLDB 2017

Input: Regular matrix T, Y, w, α for i in $1 : max_iter$ do $| w = w + \alpha * (T^{\intercal}(Y/(1 + \exp(Tw))))$ end

$T \equiv (S, K, R) \, \downarrow \, \text{Morpheus}$

Input: Normalized matrix $(S, K, R), Y, w, \alpha$ for i in $1 : max_iter$ do $P = (Y/(1 + \exp(Sw[1:d_S,] + K(Rw[d$ $w = w + \alpha * [PS, (PK)R]^{\mathsf{T}}$ end

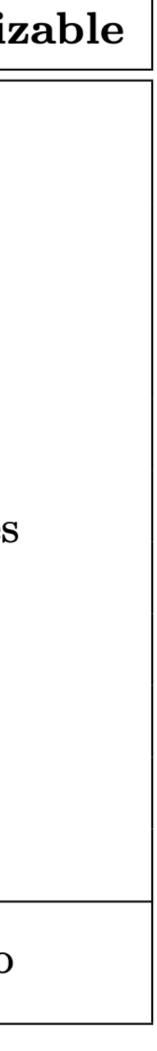
Towards Linear Algebra over Normalized Data. VLDB 2017

 $K(Rw[d_{S}+1:d_{S}+d_{R},]))))^{T}$

LA Operations Factorized in MORPHEUS

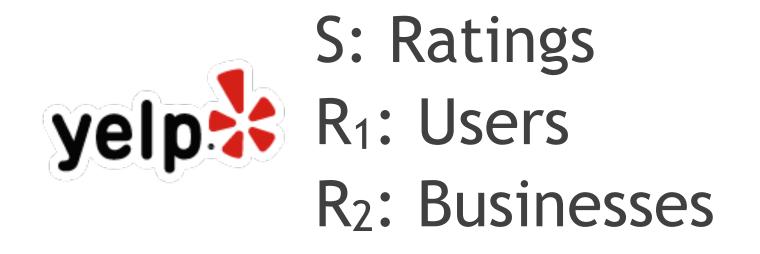
Table 1: Operators and functions of linear algebra handled in this paper over a normalized matrix T.

Op Type	Name	Expression	Output Type	Parameter X or x	Factoriz
Element-wise Scalar Op	Arithmetic Op $(\oslash = +, -, *, /, , \text{ etc})$	$T \oslash x \text{ or } x \oslash T$	Normalized Matrix	A scalar	Yes
	Transpose	T^{\intercal}		N/A	
	Scalar Function f (e.g., log, exp, sin)	f(T)		Parameters for f	
Aggregation	Row Summation	$\operatorname{rowSums}(T)$	Column Vector	N/A	
	Column Summation	$\operatorname{colSums}(T)$	Row Vector		
	Summation	$\operatorname{sum}(T)$	Scalar		
Multiplication	Left Multiplication	TX	Regular Matrix	$(d_S + d_R) \times d_X$ matrix	
	Right Multiplication	XT		$n_X imes n_S$ matrix	
	Cross-product	$\operatorname{crossprod}(T)$		N/A	
Inversion	Pseudoinverse	$\operatorname{ginv}(T)$			
Element-wise Matrix Op	Arithmetic Op $(\oslash = +, -, *, /, , \text{ etc})$	$X \oslash T \text{ or } T \oslash X$		$n_S imes (d_S + d_R)$ matrix	No

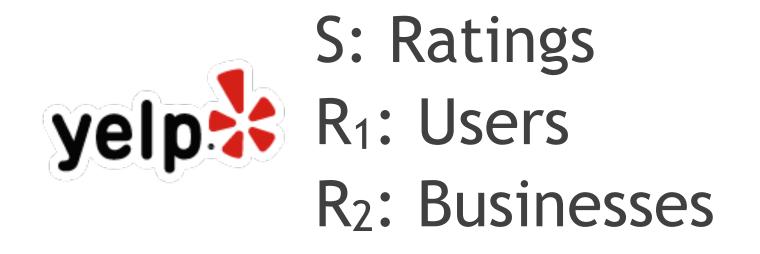


Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine

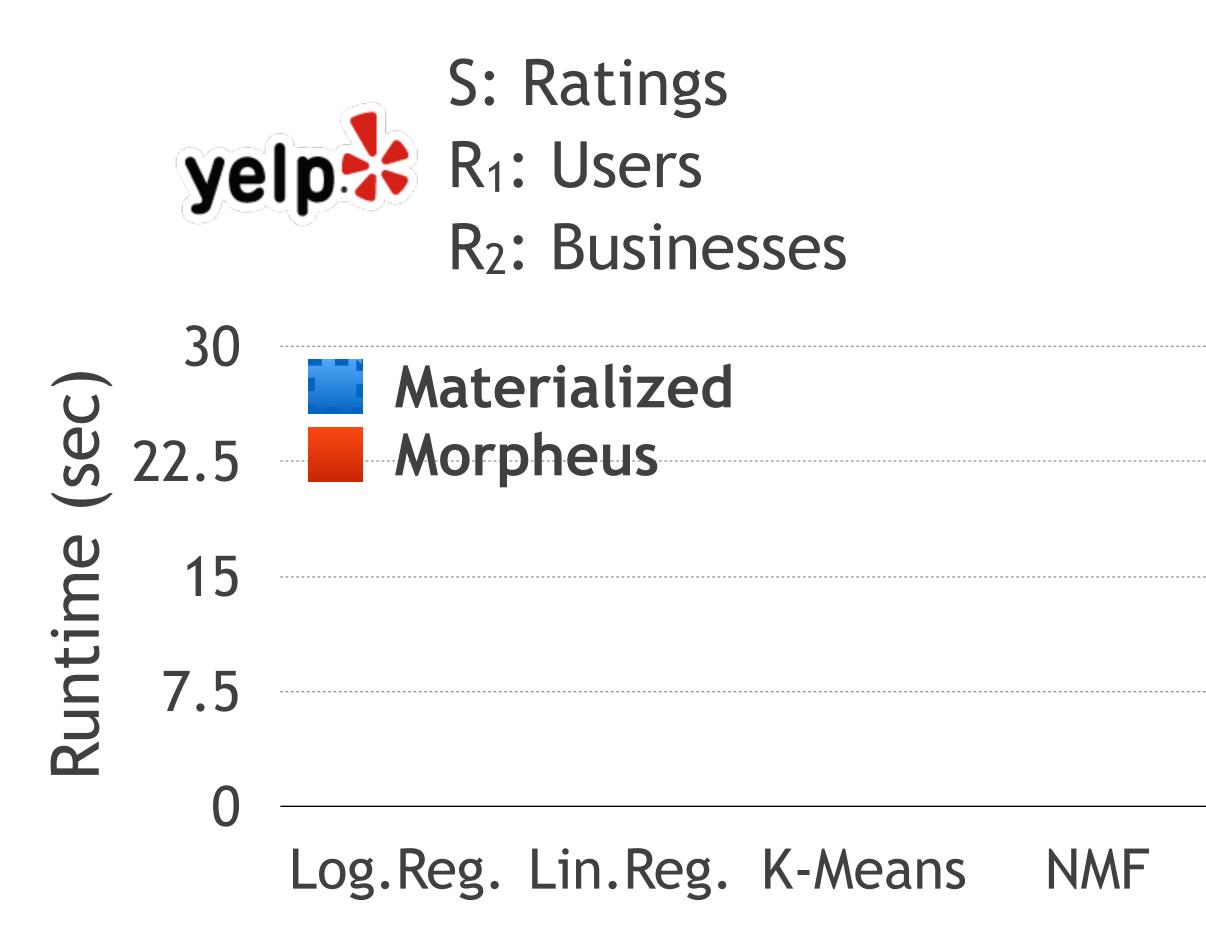


Towards Linear Algebra over Normalized Data. VLDB 2017

S: Listings

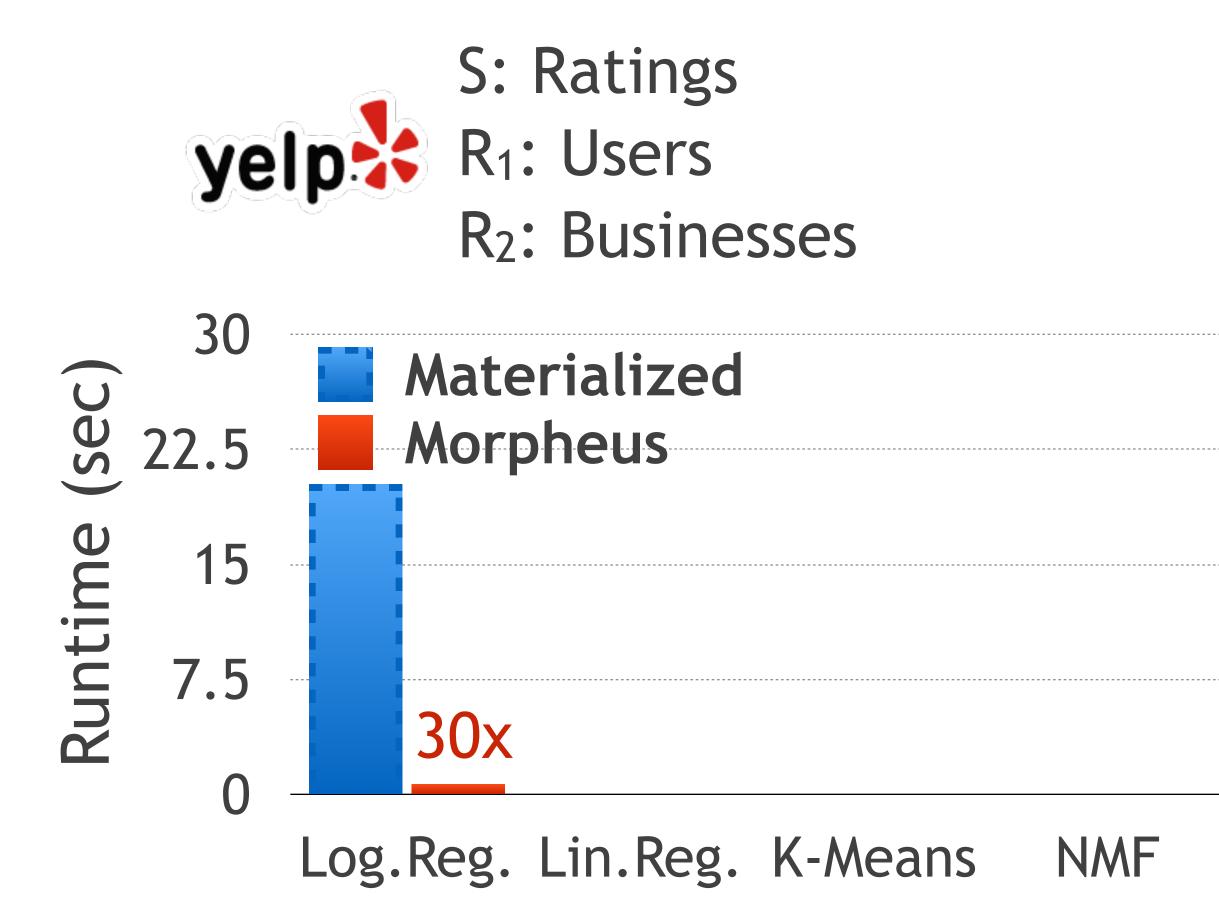
- **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



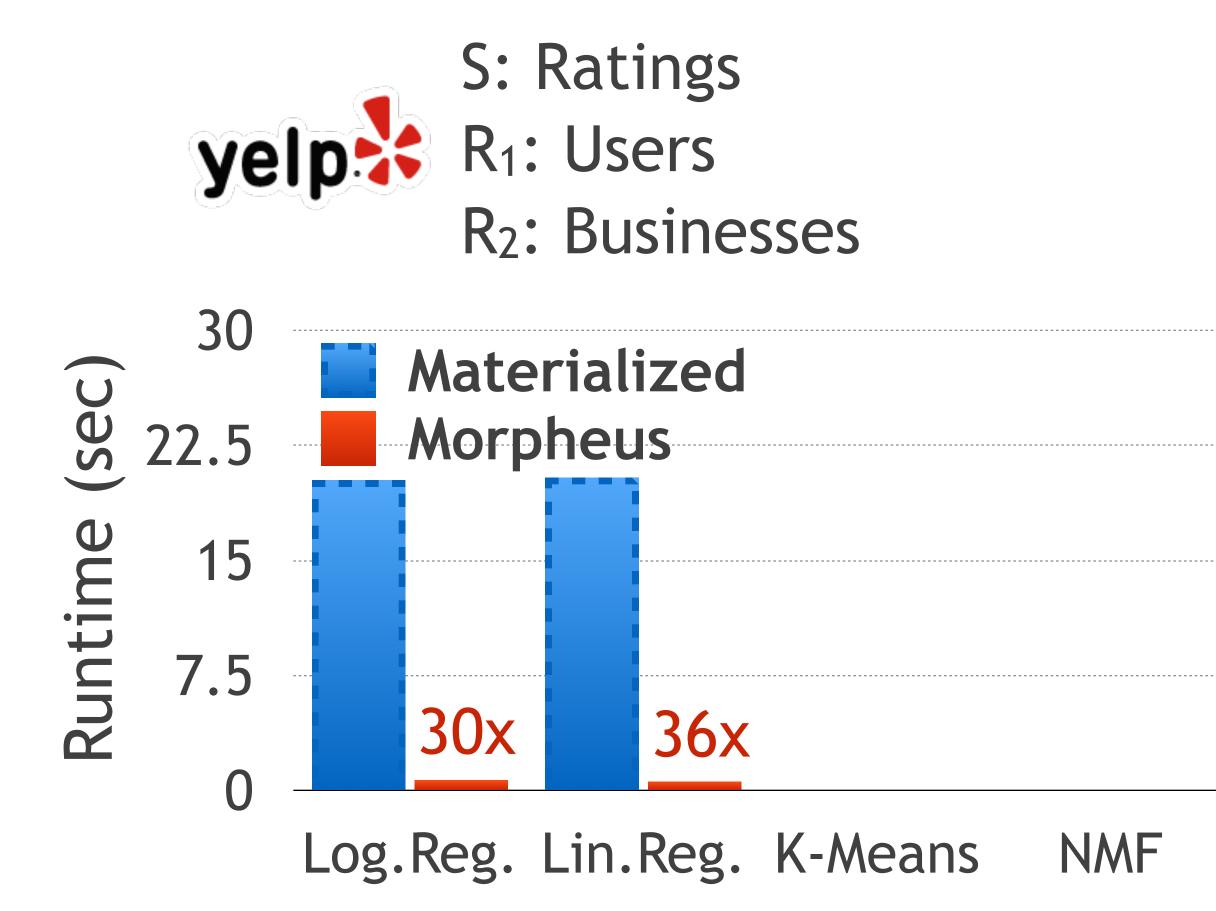
- S: Listings
- **Expedia** R₁: Hotels
- - **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



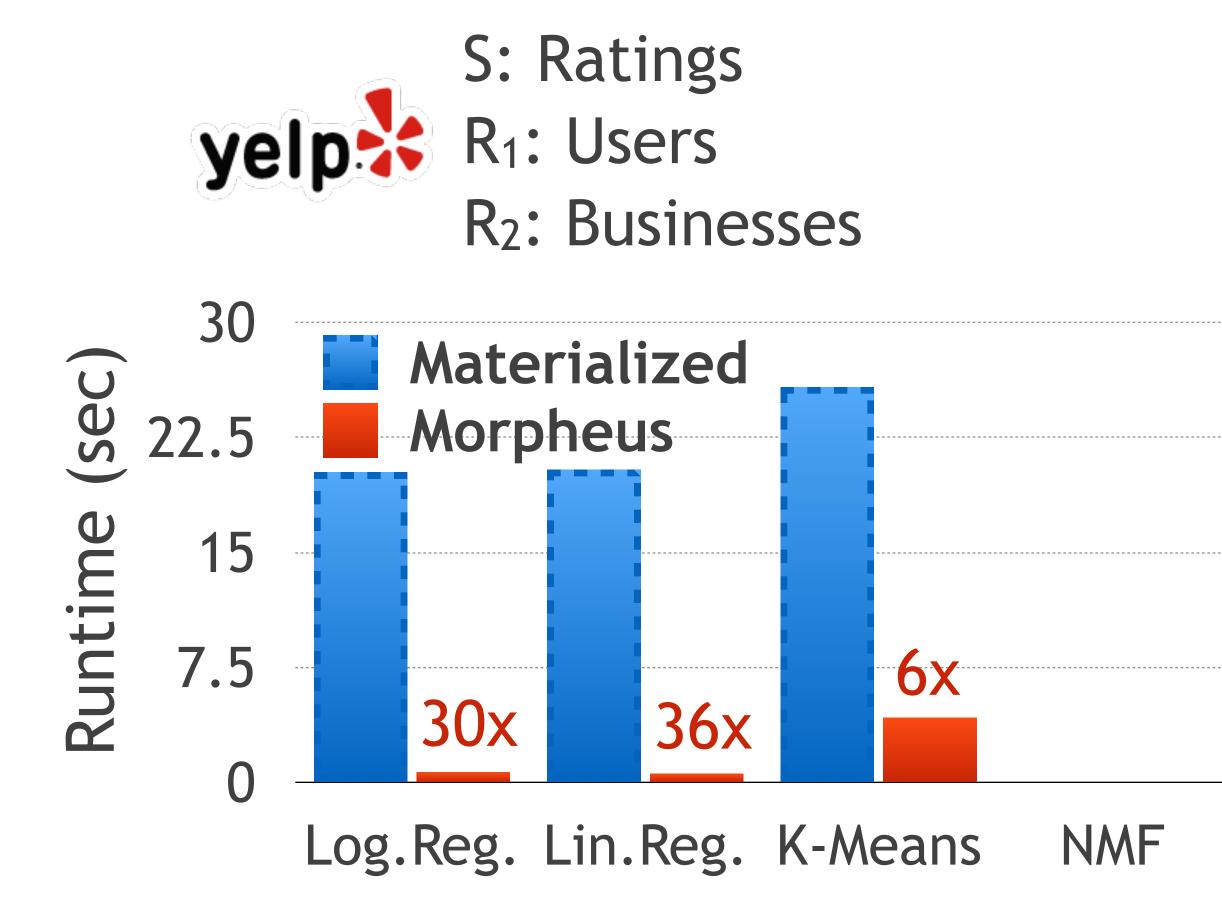
- S: Listings
- **Expedia** R₁: Hotels
- - **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



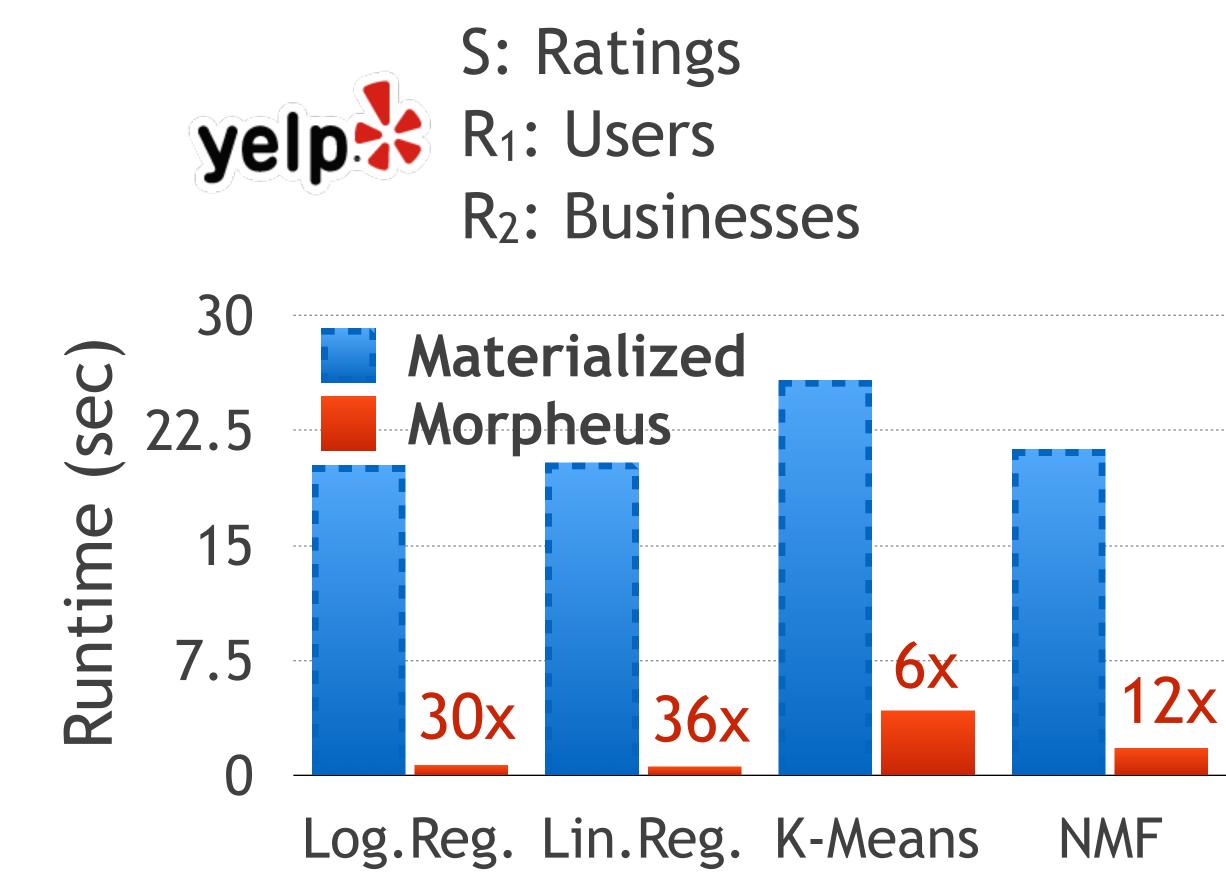
- S: Listings
- **Expedia** R₁: Hotels
- - **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



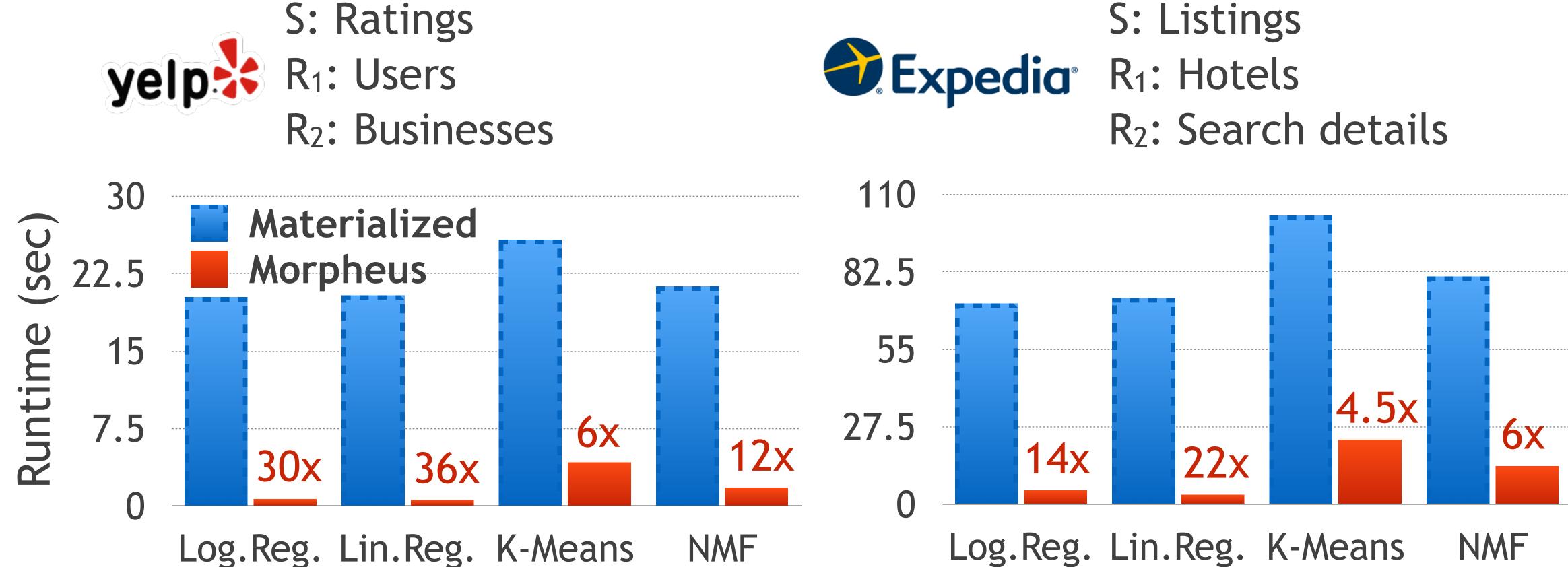
- S: Listings
- **Expedia** R₁: Hotels
- - **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine



- S: Listings
- **Expedia** R₁: Hotels
 - **R₂: Search details**

Prototype in R (and Python) for listed LA ops; ~800 LOC; commodity machine

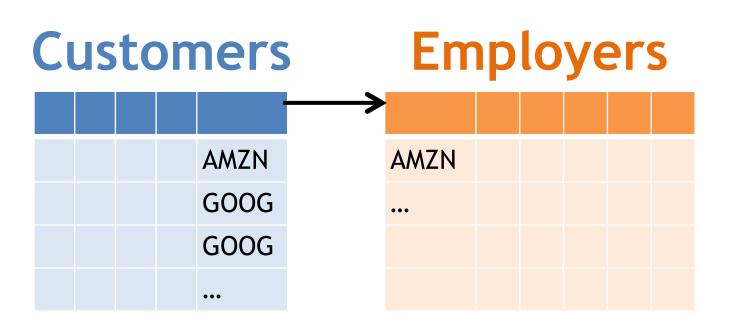


Log.Reg. Lin.Reg. K-Means

Short Answer: When the join(s) do not introduce much redundancy

Short Answer: When the join(s) do not introduce much redundancy

Case 1: Fact table is not much taller than dimension table(s)

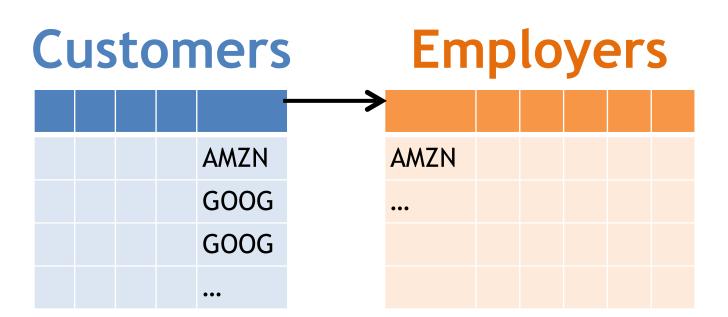


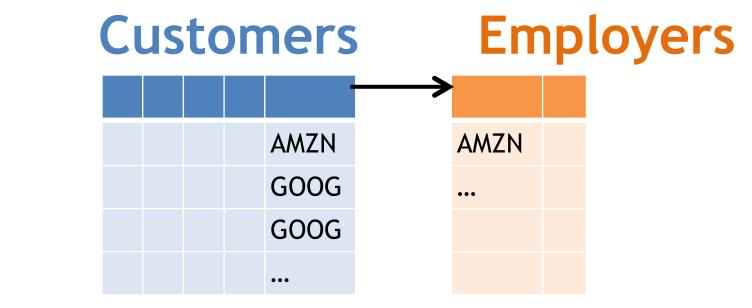
Short Answer: When the join(s) do not introduce much redundancy

Case 1: Fact table is not much taller than dimension table(s)

Case 2:

Dimension table has much fewer features than fact table





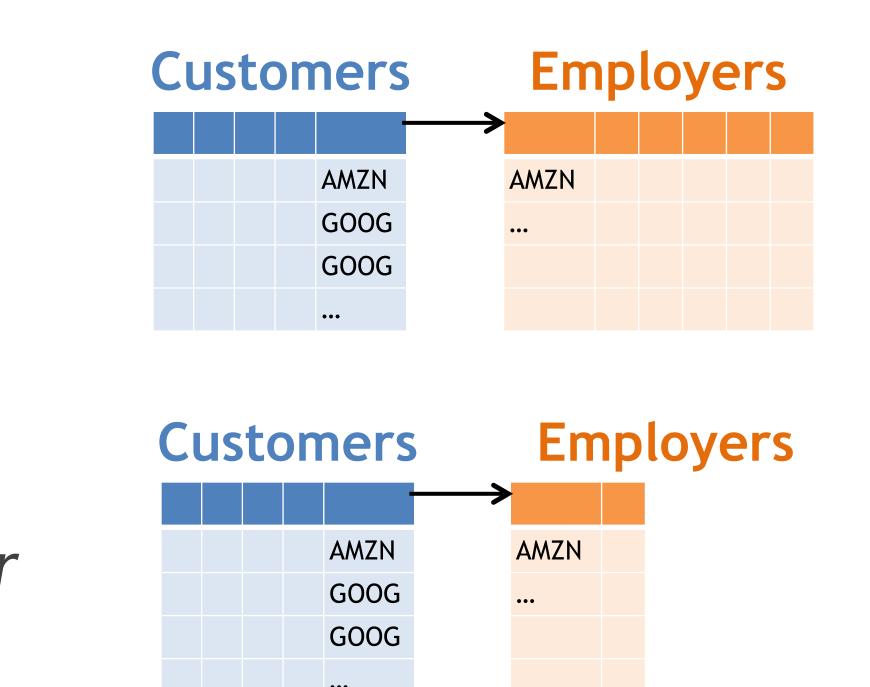
Short Answer: When the join(s) do not introduce much redundancy

Case 1: Fact table is not much taller than dimension table(s)

Case 2:

Dimension table has much fewer features than fact table

Case 3: MLPs do *not* have much computational redundancy (anyway)



Library released for both R and Python NumPy

Library released for both R and Python NumPy

Supports star schemas for many LA ops; snowflakes can be reduced to star

Library released for both R and Python NumPy Supports star schemas for many LA ops; snowflakes can be reduced to star Some data cleaning/prep ops also factorized

- Library released for both R and Python NumPy
- Supports star schemas for many LA ops; snowflakes can be reduced to star
 - Some data cleaning/prep ops also factorized

- Library released for both R and Python NumPy
- Supports star schemas for many LA ops; snowflakes can be reduced to star
 - Some data cleaning/prep ops also factorized

Avito Google ORACLE

MORPHEUSFI: Second-order feature interactions in Morpheus

- Library released for both R and Python NumPy
- Supports star schemas for many LA ops; snowflakes can be reduced to star
 - Some data cleaning/prep ops also factorized

Avito Google ORACLE

MORPHEUSFLOW: "Lazy join" for SGD in TensorFlow

- **MORPHEUSFI:** Second-order feature interactions in Morpheus

- Library released for both R and Python NumPy
- Supports star schemas for many LA ops; snowflakes can be reduced to star
 - Some data cleaning/prep ops also factorized

Google **Avito** ORACLE

- **MORPHEUSFI:** Second-order feature interactions in Morpheus
- **MORPHEUSFLOW:** "Lazy join" for SGD in TensorFlow
 - **TOC:** Generalized data compression for SGD

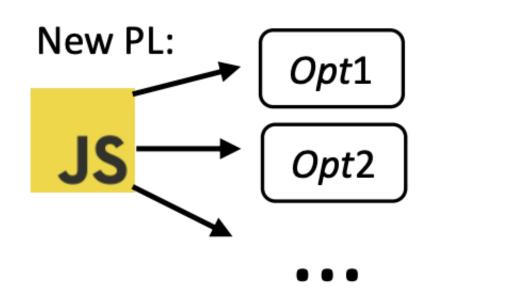
Goal: Automate Morpheus itself to many PLs in a unified way

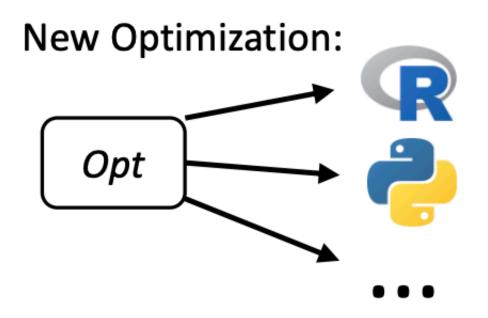
Idea:

- **Goal:** Automate Morpheus itself to many PLs in a unified way
 - Exploit GraalVM, an industrial-strength polyglot compiler + runtime for data science workloads (R, Py, Javascript, etc.)

Idea:

World without Trinity



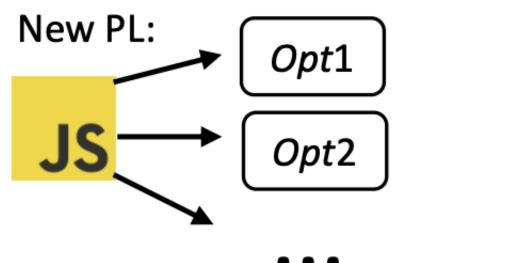


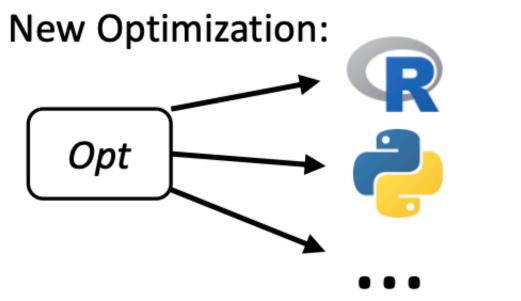
- **Goal:** Automate Morpheus itself to many PLs in a unified way
 - Exploit GraalVM, an industrial-strength polyglot compiler + runtime for data science workloads (R, Py, Javascript, etc.)

Goal: Automate Morpheus itself to many PLs in a unified way

Idea: Exploit GraalVM, an industrial-strength *polyglot* compiler + runtime for data science workloads (R, Py, Javascript, etc.)

World without Trinity





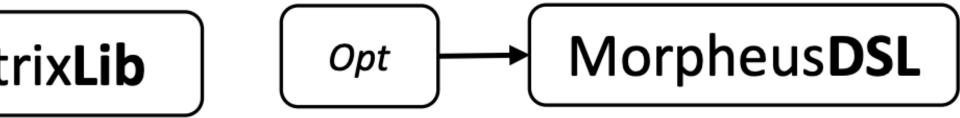
Towards A Polyglot Framework for Factorized ML. VLDB 2021

World with Trinity

New PL:

→ Matrix**Lib**

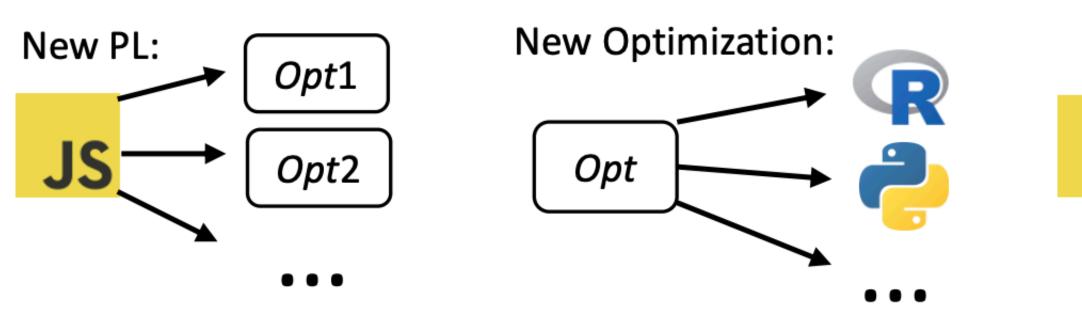
New Optimization:



Automate Morpheus itself to many PLs in a unified way Goal:

Exploit GraalVM, an industrial-strength polyglot compiler + Idea: runtime for data science workloads (R, Py, Javascript, etc.)

World without Trinity



Learn more about Trinity from David Justo at 3:30pm today!

Towards A Polyglot Framework for Factorized ML. VLDB 2021

World with Trinity

New Optimization: New PL: Morpheus **DSL** Matrix**Lib** Opt

4m Introducing ML over Joins 4m Orion: Factorized ML 10m Morpheus and Extensions 4m Roadblocks and Musings

Outline

Observation: Factorized ML yet to have big practical impact on any path. :-/

Observation: Factorized ML yet to have big practical impact on any path. :-/

Reason 1: Applicability to *business-critical* ML algorithms limited

- Tree ensembles rule tabular data; factorized ML gains marginal there
- GLMs, clustering, etc. often not big bottleneck in real-world pipelines

Observation: Factorized ML yet to have big practical impact on any path. :-/

Reason 1: Applicability to *business-critical* ML algorithms limited

- Tree ensembles rule tabular data; factorized ML gains marginal there
- GLMs, clustering, etc. often not big bottleneck in real-world pipelines

Reason 1: Applicability to *business-critical* ML algorithms limited

Reason 2: Implementation effort to make it practical still non-trivial Trinity-style: Likely promising; over the wall at Oracle now! :)

- **Observation:** Factorized ML yet to have big practical impact on any path. :-/

 - Tree ensembles rule tabular data; factorized ML gains marginal there
 - GLMs, clustering, etc. often not big bottleneck in real-world pipelines
 - Orion-style: UDFs too complex to implement/maintain on RDBMS/Spark Morpheus-style: ML not always written as LA scripts; hidden C++ callouts

Plug: First Textbook on ML Systems

Synthesis Lectures on Data Management

∞ SYNTHESIS

Matthias Boehm · Arun Kumar · Jun Yang

Data Management in Machine Learning Systems

Table of Contents

Introduction

- ML Through Database Queries and UDFs
- Multi-Table ML and Deep Systems Integration
- **Rewrites and Optimization**
- **Execution Strategies**
- Data Access Methods
- Resource Heterogeneity and Elasticity
- Systems for ML Lifecycle Tasks
- Conclusions
- Bibliography
- **Authors' Biographies**
- https://tinyurl.com/MLSystemsBook

https://adalabucsd.github.io arunkk@eng.ucsd.edu

