Vertex-centric Parallel
Computation of SQL Queries

Ainur Smagulova
Factorized Databases Workshop
August 2022

Parallel Join Processing

e Approach
1. Partition input on join attribute
2. Each processor runs join
independently
3. Outputis the union of each processor
output

Issue: Need to reshuffle (re-hash) the input
between individual join operations.

Q(A,B,C) = R(A, B) =~ S(B, C)

T processor_1]

A = | o [c

R S

T processor_2] T processor_3]

X X

m i .

H N BN § B

[DeWitt79l, Immerman87l

Parallel Join Processing: Approaches

Z

Parallel Databases
(relational databases)

THE GAMMA DATABASE
MACHINE PROJECT

@&

VERTICA

Greenplum

N\

Big Data Systems

(general purpose
computation frameworks)

& hErElEED

SHIVE

(\ Google Dremel

(A

Parallel Join Processing: Approaches

Parallel Databases
(relational databases)

THE GAMMA DATABASE
MACHINE PROJECT

@&

VERTICA

Greenplum

Z | N

Graph Systems
(vertex-centric graph
processing engines)

Pregel #*

oogle [Y

Fa
GraphLab\

“)// TigerGraph

Big Data Systems

(general purpose
computation frameworks)

& hErElEED

SHIVE

(‘ Google Dremel

(A

Vertex-centric BSP Computational Model

Vertex data

e adaptation of Bulk

Synchronous Parallel Model

(BSP) [Valiant90] to graph data
Edge data

Vertex-centric BSP Computational Model

Computation consists of supersteps.

At each superstep each active vertex:
| - Local computation/vertex program

|| - Communication via message passing

Vertex-centric BSP Computational Model

Via outgoing edges

At each superstep each active vertex:

| - Local computation/vertex program

Directly to known ID || - Communication via message passing

1. Viaoutgoing edges
2. Viadirect known ID

Vertex-centric BSP Computational Model

=

A

Via outgoing edge

A
6- At each superstep each active vertex:
| - Local computation/vertex program

Directly to known ID || - Communication via message passing

1. Viaoutgoing edges
2. Viadirect known ID

Vertex-centric BSP Computational Model

=

Via outgoing edge

At each superstep each active vertex:

A

| - Local computation/vertex program

Directly to known ID || - Communication via message passing

1. Viaoutgoing edges
2. Viadirect known ID

Vertex-centric BSP Computational Model

E?A\ >/ B 8 New superstep begins. Vertices receive

messages sent during previous superstep.

Superstep:

[] 8 | - Local computation/vertex program

|| - Communication via message passing

Vertex-centric BSP Computational Model

Computation terminates:

No messages in transit

No active vertices

The result is the union of outputs
computed by vertices.

Complexity measures

e Total Communication Cost: O(#msg)

e Total Computation Cost: O(#msg)
e Number of rounds: O(|query|) = O(1)

We show that:

Vertex-centric parallelism is extremely
well-suited to compute SQL queries with
provable theoretical guarantees and good

performance as validated by our
experiments.

Our solution compirises:

(i) Tuple-Attribute Graph (TAG) data model
e agraphencoding of arelational db
(ii) vertex-centric TAG-join algorithm

e communication and computation complexities are competitive
with the best-known parallel join algorithms

e avoids the relation reshuffling (rehashing or resorting) between
individual join operations

Encoding relations as a graph

NATION CUSTOMER
N_NATIONKEY N_NAME C_CUSTKEY | C_NATIONKEY | C_NAME
1 USA 10 1 Bob
2 France 2 2 Emma

ORDER
O_ORDERKEY | O_CUSTKEY | O_ORDERDATE
11 10 1998-05-01

2

2

1998-05-01

Encoding relations as a graph

NATION
N_NATIONKEY N_NAME

Tuple vertex: Each tuple (row) maps to a vertex

Label of a tuple vertex corresponds to the
name of the relation.

NATION_1

Attribute vertex: Each attribute value maps to a vertex

Encoding relations as a graph

NATION
N_NATIONKEY N_NAME

Label of an attribute vertex matches the data type
of the corresponding attribute.

NATION_1

Encoding relations as a graph

NATION
N_NATIONKEY N_NAME

Edge: between tuple vertex and its attribute vertices

Label of an edge matches the corresponding
attribute name.

USA

N_NAME

NATION_1

N_NATIONKEY

Attribute vertex

Tuple vertex

Attribute vertex

| CUSTOMER |
C_CUSTKEY | C_NATIONKEY | C_NAME USA

N_NAME

NATION_1

N_NATIONKEY

CUSTOMER_10 1

Map tuple to a tuple vertex “CUSTOMER_10

| CUSTOMER
C_CUSTKEY | C_NATIONKEY | C_NAME

Map each attribute value to attribute vertices

CUSTOMER_10

Bob

USA

N_NAME

NATION_1

N_NATIONKEY

CUSTOMER

C_CUSTKEY | C_NATIONKEY |C_NAME USA
N_NAME
NATION_ 1
N_NATIONKEY
10 CUSTOMER_10 / 1
C_CUSTKEY C_NATIONKEY

C_NAME

Add edges between tuple vertex
and its attribute vertices

Bob

CUSTOMER

C_CUSTKEY | C_NATIONKEY |C_NAME USA
N_NAME
NATION_ 1
N_NATIONKEY
10 CUSTOMER_10 / 1
C_CUSTKEY C_NATIONKEY

C_NAME ‘

Bob Sharing attribute value “1”

NATION N_NAME C_NAME
N_NATIONKEY | N_NAME
L L NATION_1 N_NATIONKEY/;\ C_NATIONKEY CUSTOMER _10 C_CUSTKEY 10
1 USA u
2 France O_CUSTKEY
CUSTOMER O_ORDERKEY ORDER_11
C_CUSTKEY | C_NATIONKEY C_NAME
O_ORDERDATE
10 1 Bob
2 2 Enma @ 1998-05-01
ORDER
O_ORDERKEY | O_CUSTKEY O_ORDERDATE N_NAME O_ORDERDATE
O_ORDERKEY

N_NATIONKEY

ORDER_2

1" 10 1998-05-01 NATION_2

O_CUSTKEY

2 2 1998-05-01

C_NATIONKEY C_CUSTKEY
CUSTOMER_2
C_NAME

Relational Data Instance Tuple-Attribute Graph Instance

Bob

N_NAME C_NAME

NATION NATION 1 N_NATIONKEY/:\ C_NATIONKEY CUSTOMER_10 C_CUSTKEY 10
N_NATIONKEY | N_NAME u
1 USA O_CUSTKEY
2 France () O_ORDERKEY ORDER_11
CUSTOMER
C_CUSTKEY | C_NATIONKEY C_NAME [::::::::::::C:> O_ORDERDATE
10 1 Bob Two orders share date ‘
Fri Q 1998-05-01
2 - — attribute value
~ Tuples are explicitly joined via edges to their N_NAVE . 0_ORDERDATE
— _ORDERKEY
oo , . 0 N_NATIONKEY
—— join attribute values. AL e
1 O_CUSTKEY
2 e potlimited to PK-FK joins

e Implicit indexing scheme = quick

navigation to tuples that share a value

Relational Data Instance

C_NATIONKEY C_CUSTKEY

CUSTOMER_2

C_NAME

Tuple-Attribute Graph Instance

Check join conditions in parallel: 2-way join example
R(A, B) = S(B, C)

S1 |

S2 |

S3 |

0006

o (2

Check join conditions in parallel: 2-way join example

Superstep 1

o

R(A, B) = S(B, C)

S

S

0006

S

R1 S1
= 59"
RB /B
R2 - QE\ b1 BSB 52
=N XK
RB 5B
R3 S3
4
R4 RB b2
b3x S4

S.B

Check join conditions in parallel: 2-way join example

Superstep 1

X
R1

52 RB
R2 R.B

< rB
ol:
e rRA L_R4 RB

bl

b2

b3

R(A, B) = S(B, C)

S

S

0006

S

S1
SB
SB Y:
S.B

S3
SB 54

Check join conditions in parallel: 2-way join example

Superstep 2

S1

S2

S3

S

S

S

600

S4

R(A, B) = S(B, C)

Check join conditions in parallel: 2-way join example

Superstep 2

S1

S2

S3

S

S

S

600

S4

R(A, B) = S(B, C)

Check join conditions in parallel: 2-way join example

Superstep 3

R(A, B) = S(B, C)

S

S

S

al, bl cl
al,bl,c2
al,bi,c3
() . |02 3
a3,b1,c3
RB B
R2 RB bl SB 52
R'B S.B
e RA R3 S3
e rRA L_R4 RB < b2 ,
< b3 ! SB 54

000

2-way join example: cost analysis

At superstep 1and 2 :1 Eig
al,bi,c3
e Computation: O(IN) = N - e @
e Communication: O(#msg) <= |R| +|S| = O(IN) N adbted & |
o O(#msg) <= O(min(IN, OUT)) = N mem @
RB SB
(=)
|R| - #tuples in relation R 6 >8 - >¢ °

|S| - #tuplesinrelation S
IN - #tuples in the input
OUT -#tuples in output

2-way join example: cost analysis

At superstep 1 and 2

e Computation: O(IN)
e Communication: O(#msg) <= |R| +|S| = O(IN)
o O(#msg) <=0O(min(IN,OUT))

At superstep 3: computing output
e Computation: O(#msg) = O(OUT)
e Communication: O(#msg) = O(OUT)

|R| - #tuples in relation R
|S| - #tuplesinrelation S
IN - #tuples in the input
OUT -#tuples in output

al, bl cl
al,bi,c2
al,bi,c3
. 'J{'
W a3,b1,c3
RB 5B
RA RB Wit 5B
s 58
e
RA Fz'.'s'i

o

Compact Representation of the Output

Flat representation of join result Factorized representation of join result
al,bl,cl bl
al,bl,c2 '
al,b1,c3 < > X
a3,b1,c3 al,a2,a3 cl,c2,c3
OUT <=|R| * S| = O(IN?) Four <= IR +[S| = O(IN)

Factorizing join result [Otleanu’12,15,16]

2-way join example: cost analysis with factorization

At each superstep 1and 2

e Computation: O(IN)

e Communication: O(#msg) <= |R| +|S| = O(IN)
o O(#msg) <=0O(min(IN,OUT))

At superstep 3: computing output
e Communication: O(#msg) = |[R| + |S|= O(IN)
e Computation: O(#msg) = |R| +|S| = O(IN)

|R| - #tuples in relation R
|S| - #tuplesinrelation S
IN - #tuples in the input
OUT -#tuples in output

|

x
3

al,a2,a3 cl,c2,c3

=

>
=
w

=
>
3
@

%

&

RE™ 5B
AR K8
B SB

At e

52]

| | e

Ceto—(«)

2-way join: main result

Any 2-way join query can be computed by a vertex-centric algorithm with
O(IN + OUT) communication™ and computation cost.
e Afactorized representation of a 2-way join can be computed

with O(IN) cost.

*assuming output tuples are sent to one location

Vertex-centric Acyclic Join Algorithm

Input: TAG traversal plan (to guide the graph traversal)
Algorithm (two phases):

1. Reduction*: mark the edges that connect tuple and attribute vertices that
contribute to the join.

2. Collection: traverse the marked subgraph to collect the actual join result

Output: union of vertex join results

*Semi-join reduction technique used in
databases. [Bernstein81, Yannakakis81]

TAG plan construction

Q= S(A, F) = R(A, B, C) = T(C, D) = V(C, E)

() TD

Join tree
GHD = generalized hypertree decomposition

SA

RA

—TC W~

TAG traversal plan

i RB (:)

Traversal Plan Q-=S(A F)=R(A,B,C)=T(C,D)=V(C,E)

mEG
SF /\ Direction of the traversal

SA
Condition to check:
S, A=R.A

RA

() i

Condition to check:
RC=T.C=VC

(:) TD U Vv V.E(:>

Reduction phase: bottom-up direction

Traversal Plan Q-=S(A F)=R(A,B,C)=T(C,D)=V(C,E)

. S.F [)
S.A
R.A

R RB °
R.C

Reduction phase: top-down direction

TC V.C

()T.D U v V.E<:)

Traversal Plan Q-=S(A F)=R(A,B,C)=T(C,D)=V(C,E)

S SF ()

RA

R RB °

RC

Collection phase: bottom-up direction

TC V.C

()T.D U v V.E<:)

G

Q=S(A, F)=R(A, B, C) = T(C, D) = V(C, E)

SA ° RA

w0

o0+

- = B0

Traversal plan

TAG encoding of relations S, R, T and V

Reduction phase: bottom-up

Condition to check:
RC=TC=VC

RC

RC

R.C

SA ° RA RC

T.C

cl

T.C

V.C

c2

V.C

c3

V.C

Reduction phase: bottom-up

----------- 2 c2 <
RC
7’
7’
4
4
4
7’
7’
7’
<RC
4
4
7’
/

RC <3

N
N
<
<
N
C .
N
<
4
-
.
-
-
-
-
-
-
-TC
- .
.
-
-
N
N
-
<
.

V.C

V.C

0

T@

Reduction phase: bottom-up

RC <3

N
N
<
<
N
C .
N
<
4
-
.
-
-
-
-
-
-
-TC
- .
.
-
-
N
N
-
<
.

V.C

V.C

0

T@

Reduction phase: bottom-up

Propagate “wake up” message to
the next join attribute vertex

V.C s
RC
e
RC

V.C

e Ve

@TD

EE——0

O

0B =0

= 20)

Reduction phase: bottom-up

Propagate “wake up” message to
the next join attribute vertex

V.C s
RC
e
RC

V.C

e Ve

@TD

0

O

0B =0

—(®

0

Reduction phase: bottom-up — =
¢
- A B0
_______________________ e @
S'A R.A R.C \\\\ T'C @TD d b VE ()
VC ..
Propagate “wake up” message to
the next join attribute vertex
o<
V.C e
RC

V.C

R.C

V.C

Reduction phase: bottom-up

S.A R.A

Condition to check: > 4
S, A=R.A a2

a3

.
.
.
.
.
e
.
-
4
T
.
.
.
.
. o
s 7]
~ 10
. N .
N
N
N
N
N
N
N
N
N
N
C~.
N
N
4
-
.
-
-
-

V.C
RC

V.C

Reduction phase: bottom-up

Condition to check: > 4
S, A=R.A a2

1 a3

.
.
.
.
.
e
.
-
4
T
.
.
.
.
. o
s 7]
~ 10
. N .
N
N
N
N
N
N
N
N
N
N
C~.
N
N
4
-
.
-
-
-

V.C
RC

V.C

Reduction phase: top-down

S.A

S.A

a3

.
.
.
.
.
.
.
-
.
4 .
.
.
.
.
.
s s]
~ 10
. N .
N
N
N
N
N
N
N
N
N
N
C~.
N
N
4
-
.
-
-
-

V.C
RC

V.C

5

Reduction phase: top-down

< TC
al e e [’_, ____________
SA RA RC @ TC

SA YL

V.C
a3

RA R.C

Reduction phase: top-down

S.A

S.A

al

a3

R.A

RA

RA

R.C

-,
.
-’
’
.
-,
-,
P
.,
4 .
’
.
-,
~
~
. ~ .
~
~
~
~
~
~
~
~
. ~
~
~
-
-
-
-
-
-

V.C

V.C

=0

]

RC

TRC

SA

-2 O)

Ve~

-V VE (:)

0

\
O

Reduction phase: top-down

TC B8-0

___________ e @

S'A R'A R.C \\\\ T'C @TD d b VE ()
VC ..
e
RS
V.C Tl
“RC

V.C

R.C

V.C

0

O

Reduction phase: top-down
00
8 '_’_/_/ __________ j @
SA RA R.C . TC Ow=T = 0

0

O

Reduction phase: top-down
030
8 '_’_/_/ __________ @
S.A R.A R.C . TC . “ v N o
Ve,

R.C

V.C

R.C

V.C

Reduction phase: top-down

SA ° RA

R.C

.
.
.
P
.
.
.
-
“TC
4 .
.
.
.
.
.
cl €———————————— -
N
~ TC
< .
~
N
~
~
~
~
N
~
~
VC
A ~
~
~
p
P
P
-
P
-
-
-
P
-T.C
- .
P
-
P
-
c2 <
N
<
N
~
<
~
<
~
<
<
~
V.C ~
~
f <
N

V.C

V.C

@10

0

=0

Reduction phase: top-down

R.C

Reduction phase: top-down

R.C

V.C

V.C

Collection phase: bottom-up

SA ° RA

O+ O+]
§o

e e
S -~ I -- B0

Collection phase: bottom-up O

SA ° RA RC <t

c2

V.C

V.C

V.C

Collection phase: bottom-up d—

SA ° RA RC <t

c2

V.C

V.C

V.C

Collection phase: bottom-up

SA ° RA

Collection phase: bottom-up ~ *=

SA ° RA

Collection phase: bottom-up

al
SA R.A

S.A RA

a3
R.A

R.C

V.C

V.C

A\
o[-0+]
/ a g 4
%9
5/
»

©

.
c

=0

Collection phase: bottom-up

S.A

a3

a—

RA

RA

R.C

V.C

V.C

o
e AC
)

Collection phase: bottom-up

SA ° RA

Done!

Acyclic Join Algorithm: Cost analysis

Total communication and computation: O(IN + OUT)

e Reduction phase: O(IN)
o Sending messages along outgoing edges — #edges is linear in the size of the
input
e Collection phase: O(OUT)
o Only traverse vertices that are part of the output — total #messages is at most
the number of tuples in the output

Total number of rounds = O(1):

e Only depends on the size of the query, i.e. number of relations to join
e Under assumption that query size is constant, then algorithm runs in O(1) rounds

Acyclic Multi-way Joins: Main Result

Any acyclic join query can be computed by a vertex-centric algorithm

with O(IN + OUT) communication and computation cost.

*Vertex-centric analog of [Yannakakis81]

Acyclic Queries: Comparison to existing results
Distributed setting:

Vertex-centric Join GYM Parallel Sort Join
[Afrati1l7,Koutris18] [Hu'19]

O(IN +OUT)

Communication cost O(IN+OUT) O(IN +VIN -OUT)

factorized : O (IN + FOUT)

O(IN +OUT)

Computation cost factorized: O (IN+F

(involves hashing cost) | (involves sorting cost)

our)

Factorizing join result yes no no

Partition/sort input at

query runtime Yes Yes

Main theoretical results:

e Acyclic queries can be computed with optimal cost O(IN + OUT)
e Cyclic queries: O(IN™?)
o Triangle queries (simplest cycle) with worst-case optimal cost O(IN*?)

e Cartesian Product: O(IN")

Main Theorem (TAG-join algorithm): An arbitrary equi-join query, given its

tree decomposition with width w, can be computed in the vertex-centric BSP

model with O(INY+OUT) communication and computation.

IN - input size, OUT - output size, n - number of relations in a query, w - width
Assuming query size is constant

Beyond Joins

e Selection
Projection
e Grouping and Aggregation
o including over partition by, rollup and HAVING clause
e Subqueries:
o Scalar subqueries using >, <, = operators
o Non-scalar (multi-row) using IN, EXISTS, NOT IN, NOT EXISTS
o Correlated subqueries
o Subqueries in FROM clause (inline view)
o Subqueries defined using WITH clause
e Outer Joins (left, right, full)

Beyond Joins: Grouping and Aggregation

To group tuples in the output on one or more attributes, and compute some

aggregate (e.g count, avg, sum, max, min) value for each group.

e Compute aggregates as we traverse the graph bottom-up in the collection

phase.

Beyond Joins: Grouping and Aggregation

Total revenue grouped by order date
09-01-99 09-02-99

Order1 Order2 Order3 Order4
item1 item2 item3 item4 item4 item5 itemé6

Build a traversal plan s.t. grouping attribute(s) is at the top of the traversal

Beyond Joins: Grouping and Aggregation

Order1

-————

100

09-01-99

100

item1

Total revenue grouped by order date

Order2

item2

50

50

item3

Order3

item4

09-02-99

Order4

100

150

-———

itemé

item7

Beyond Joins: Grouping and Aggregation

Order1

100

item1

09-01-99

Total revenue grouped by order date

Order2

item2

A
[

150

item3

Order3

item4

09-02-99

Order4

A
[

150

item5

itemé

item7

Beyond Joins: Grouping and Aggregation

item1

09-01-99

Total revenue grouped by order date

150

Order2

item2

item3

230

Order3

item4

09-02-99

item5

itemé

150

Order4

item7

Beyond Joins: Grouping and Aggregation

Total revenue grouped by order date

2
>0 380
09-01-99 09-02-99

Order1 Order2 Order3 Order4
item1 item2 item3 item4 item5 itemé6 item7

Local Aggregation - each group maps to a vertex

Experimental Evaluation: two settings

Intra-server parallelism

-

\-

~

server

Distributed cluster parallelism

N
- N
-
-7 N
- N
N
N

Single-server Experiments

Relational: Graph:
PostgreSQL (psql) e TigerGraph (TAG_tg)
RDBMS-X (rdbmsX) @ 0 N.atlve graph storage
o High-level query language
o In-memory Column store (rdbmsX_im) o Vertex-centric computation
RDBMS-Y (rdbmsY) model
Spark/Spark SQL

Hardware: 32 vCPU, 244 GB RAM
Dataset and Queries: TPC-H and TPC-DS benchmarks at SF-30, 50, 75

Methodology: measured warm cache runs

Single-server Experiments: TPC-H (22 queries)

B psqgl @ rdbmsX rdomsX_im [rdomsY [spark_sql [TAG_tg

800

In aggregate TAG-join on TigerGraph:

600

e 7/xfaster than PostgreSQL

e 4.7xfaster than Spark SQL

e competitive with RDBMS-X and
RDBMS-Y.

400

Time (sec)

200

SF-75

RDBMS-X column store outperforms by 1.6x Aggregate runtimes (i.e. summed over all queries)

Single-server Experiments: TPC-DS (84 queries)

B psq @ rdbmsX rdbomsX_im [rdbmsY [spark_sql [TAG tg
10000

In aggregate TAG-join on TigerGraph:

7500

e 28xfaster than PostgreSQL

e O6xfaster than RDBMS-Y

e 5Sxfaster than RDBMS-X

e 4.5xfaster than RDBMS-X column store
e 5.6xfaster than Spark SQL

5000

Time (sec)

2500

SF-75

Aggregate runtimes (i.e. summed over all queries)

Distributed Experiments

Relational: Graph:

e Spark/SparkSQL 3.0.1 @ e TigerGraph 3.0 (TAG tg)

Hardware: cluster of 6 machines, each with 16 vCPU, 64 GB RAM
Dataset and Queries: TPC-H and TPC-DS benchmarks at SF- 75

Distributed Experiments: Aggregate Runtimes

TPC-H queries: 8 spark_sql W TAG_ (g
800
e TAG-joinis 2x faster than Spark SQL. 579.9
600
TPC-DS queries: ’g
®» 400
e TAG-joinis 1.5x faster than Spark SQL g 183.1
~ 200 91.8
0
TPC-H TPC-DS

Aggregate runtimes (i.e. summed over all queries) at SF-75

Distributed Experiments: Network Traffic

TPC-H queries:

e Spark SQL incurs 9x more traffic

TPC-DS queries:

e Spark SQL incurs 4x more traffic

B spark sql [TAG tg
139.5

150
)
S 0 80.3
O
=
o
g 50
o
2 8.3
o)
pd

0

TPC-H TPC-DS
Total incoming traffic at SF-75

We show that:

Vertex-centric parallelism is extremely
well-suited to compute SQL queries with
provable theoretical guarantees and good

performance as validated by our
experiments.

For details refer to:

“Vertex-centric Parallel Computation of SQL queries ”

Ainur Smagulova, Alin Deutsch, SIGMOD 2021

“Vertex-centric Parallel Computation of SQL queries (extended version) ” (ArXiv)

http://cseweb.ucsd.edu/~asmagulo/

http://cseweb.ucsd.edu/~asmagulo/

APPENDIX

Triangle Query Algorithm

R(A,B)>S(B,C)=T(A,C)

Triangle Query Algorithm (naive algorithm)

a sends its value in both directions

via path that leads to ¢

Triangle Query Algorithm

b sends the received
message(s) further to c value

Triangle Query Algorithm

c intersects a values received
from both sides.

a-values that survive the
intersection are in the output

| a :> (a,b,C)

Triangle Query: communication cost analysis

O(|R[) +O(IT])

Triangle Query: communication cost analysis

a

AN
C
— > - \) number of a-values received <= |R |

replication of each a value <= |S]|

Total #messages sent: O(|R | *|S]) = O(IN?)
(worst-case instance)

Triangle Query Algorithm (WCO)

Vertex-centric approach:
O(AGM) communication cost

O(AGM) computation cost

AGM - worst-case bound on the output size

Triangle Query Algorithm

Vertex-centric approach:
O(IN*2) communication cost

O(IN*?) computation cost

Algorithm idea [Ngo12] : handle heavy (highly

skewed) and light values separately - applied to

graphs.

Triangle query algorithm

R(A,B)>S(B,C)=T(A,C)

Split original query into two:

[((RM*2Y»S)XT)] U[(R"&"=T)xS)

ais heavy:
If |RA=a| >0 then (a,b) N Rheavy

ais light:
If [R,_ | <=6then (a,b)— R

Triangle query algorithm - Heavy

(Rheavy b S) XT

heavy

Triangle query algorithm - Heavy

(Rheavy B S) XT

a sends its value in both directions

via path that leads to ¢

Triangle query algorithm - Heavy

(Rheavy B S) XT

c intersects a-values received
from both sides.

a-values that survive the
intersection are in output

b S C
_a:bE —> (abg)

Triangle query algorithm - Light

(RUEM<T) XS

light

Triangle query algorithm - Light

(RUEM<T) XS

light a-values send “wake-up”
messages to all the b-values
that are connected to a

Triangle query algorithm - Light

(RUEM=T) XS

b sends its value in both directions

via path that leads to ¢

Triangle query algorithm - Light

&

N

b:a

—

(RUEM=T) XS

c intersects b values received
from both sides.

b-values that survive the
intersection are in output

(a,b,c)

Triangle query: communication cost analysis

Heavy: [R| +[T| +|R| /6 * |S] Note: if [R| =|S| =|T| =N

Light: |R| +|S|+0 *|T|

total cost is O(N*2) [AGM bound]
|R|-|S]

Setting @ = \ T 9= /N

Total Cost: O(+/|R| - |S| - |T|) [AGM bound]

