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Goal of This Course

Introduction to a principled approach to in-database computation

This course starts where mainstream database courses finish.

Part 1: Joins

Part 2: Aggregates

Part 3: Optimization
I Learning models inside vs outside the database

I From learning to factorized aggregate computation

I Learning under functional dependencies

I In-database linear algebra: Decompositions of matrices defined by joins
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Outline of Part 3: Optimization



AI/ML: The Next Big Opportunity

AI is emerging as general purpose technology

I Just as computing became general purpose 70 years ago

A core ability of intelligence is the ability to predict

I Convert information you have into information you need

The quality of the prediction is increasing as

the cost per prediction is decreasing

I We use more of it to solve existing problems

I Consumer demand forecasting

I We use it for new problems where it was not used before

I From broadcast to personalized advertising
I From shop-then-ship to ship-then-shop
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Most Enterprises Rely on Relational Data for AI Models

Retail: 86% relational

Insurance: 83% relational

Marketing: 82% relational

Financial: 77% relational

Source: The State of Data Science & Machine Learning 2017, Kaggle, October 2017 (based on

2017 Kaggle survey of 16,000 ML practitioners)
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Relational Model: The Jewel in the Database Crown

Last 40 years have witnessed massive adoption

of the Relational Model

Many human hours invested in building

relational models

Relational databases are rich with knowledge

of the underlying domains

Availability of curated data made it possible to

learn from the past and to predict the future

for both

humans (BI) and machines (AI)
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Current State of Affairs in Building Predictive Models

→

Current ML technology

THROWS AWAY

the relational structure

and domain knowledge

that can help build

BETTER MODELS

Design matrix

Features

S
am

p
le

s
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Learning over Relational Databases:
Revisit from First Principles
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In-database vs. Out-of-database Learning

Feature Extraction

Query
DB

materialized output

= design matrix

ML tool θ

Model
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Out-of-database learning requires: [KBY17,PRWZ17]

1. Materializing the query result

2. DBMS data export and ML tool import

3. One/multi-hot encoding of categorical variables

All these steps are very expensive and unnecessary!
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In-database vs. Out-of-database Learning

[ANNOS18a+b]

Feature Extraction

Query
DB

materialized output

= design matrix

ML Tool θ

Model

Model Reformulation
Optimized

Query+Aggregates

Factorized Query

Evaluation

Optimization

In-database learning exploits the query structure, the database schema, and

the constraints. 11 / 1



Aggregation is the Aspiring to All Problems [SOANN19]

Model # Features # Aggregates

Supervised: Regression

Linear regression n O(n2)

Polynomial regression degree d O(nd ) O(n2d )

Factorization machines degree d O(nd ) O(n2d )

Supervised: Classification

Decision tree (k nodes) n O(k · n · p · c)

(c conditions/feature, p categories/label)

Unsupervised

k-means (const approx) n O(k · n)

PCA (rank k) n O(k · n2)

Chow-Liu tree n O(n2)
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Does This Matter in Practice? A Retailer Use Case

Relation Cardinality Arity (Keys+Values) File Size (CSV)

Inventory 84,055,817 3 + 1 2 GB

Items 5,618 1 + 4 129 KB

Stores 1,317 1 + 14 139 KB

Demographics 1,302 1 + 15 161 KB

Weather 1,159,457 2 + 6 33 MB

2.1 GB
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Out-of-Database Solution: PostgreSQL+TensorFlow

Train a linear regression model to predict inventory units

Design matrix defined by

the natural join of all relations, where

the join keys are removed

Join of Inventory, Items, Stores, Demographics, Weather

Cardinality (# rows) 84,055,817

Arity (# columns) 44 (3 + 41)

Size on disk 23GB

Time to compute in PostgreSQL 217 secs

Time to Export from PostgreSQL 373 secs

Time to learn parameters with TensorFlow∗ > 12,000 secs

TensorFlow: 1 epoch; no shuffling; 100K tuple batch; FTRL gradient descent
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In-Database versus Out-of-Database Learning
PostgreSQL+TensorFlow In-Database (Sept’18)

Time Size (CSV) Time Size (CSV)

Input data – 2.1 GB – 2.1 GB

Join 217 secs 23 GB – –

Export 373 secs 23 GB – –

Aggregates – – 18 secs 37 KB

GD > 12K secs – 0.5 secs –

Total time > 12.5K secs 18.5 secs

> 676× faster while 600× more accurate (RMSE on 2% test data) [SOANN19]

TensorFlow trains one model.

In-Database Learning takes 0.5 sec for any extra model over a subset of the

given feature set.
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Outline of Part 3: Optimization



Learning Regression Models with Least Square Loss

We consider here ridge linear regression

fθ(x) = 〈θ, x〉 =
∑
f∈F

〈θf , xf 〉

Training dataset D = Q(I ), where

I Q(XF ) is a feature extraction query, I is the input database

I D consists of tuples (x, y) of feature vector x and response y

Parameters θ obtained by minimizing the objective function:

J(θ) =

least square loss︷ ︸︸ ︷
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +

`2−regularizer︷ ︸︸ ︷
λ

2
‖θ‖2

2
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Side Note: One-hot Encoding of Categorical Variables

Continuous variables are mapped to scalars

I xunitsSold, xsales ∈ R.

Categorical variables are mapped to indicator vectors

I country has categories vietnam and england

I country is then mapped to an indicator vector

xcountry = [xvietnam, xengland]> ∈ ({0, 1}2)>.

I xcountry = [0, 1]> for a tuple with country = ‘‘england’’

This encoding leads to wide training datasets and many 0s
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From Optimization to SumProduct Queries

We can solve θ∗ := arg minθ J(θ) by repeatedly updating θ in the direction of

the gradient until convergence (in more detail, Algorithm 1 in [ANNOS18a]):

θ := θ − α ·∇J(θ).

Model reformulation idea: Decouple

data-dependent (x, y) computation from

data-independent (θ) computation

in the formulations of the objective J(θ) and its gradient ∇J(θ).

19 / 1



From Optimization to SumProduct FAQs

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2

=
1

2
θ>Σθ − 〈θ, c〉+

sY
2

+
λ

2
‖θ‖2

2

∇J(θ) = Σθ − c + λθ,

where matrix Σ = (σij)i,j∈[|F |], vector c = (ci )i∈[|F |], and scalar sY are:

σij =
1

|D|
∑

(x,y)∈D

xix
>
j ci =

1

|D|
∑

(x,y)∈D

y · xi sY =
1

|D|
∑

(x,y)∈D

y 2

20 / 1



From Optimization to SumProduct FAQs

J(θ) =
1

2|D|
∑

(x,y)∈D

(〈θ, x〉 − y)2 +
λ

2
‖θ‖2

2

=
1

2
θ>Σθ − 〈θ, c〉+

sY
2

+
λ

2
‖θ‖2

2

∇J(θ) = Σθ − c + λθ,

where matrix Σ = (σij)i,j∈[|F |], vector c = (ci )i∈[|F |], and scalar sY are:

σij =
1

|D|
∑

(x,y)∈D

xix
>
j ci =

1

|D|
∑

(x,y)∈D

y · xi sY =
1

|D|
∑

(x,y)∈D

y 2

20 / 1



Expressing Σ, c, sY using SumProduct FAQs

FAQ queries for σij = 1
|D|
∑

(x,y)∈D xix
>
j (w/o factor 1

|D| ):

xi , xj continuous ⇒ no free variable

ψij =
∑

f∈F :af ∈Dom(Xf )

∑
b∈B:ab∈Dom(Xb)

ai · aj ·
∏
k∈[m]

1Rk (aS(Rk ))

xi categorical, xj continuous ⇒ one free variable

ψij [ai ] =
∑

f∈F−{i}:af ∈Dom(Xf )

∑
b∈B:ab∈Dom(Xb)

aj ·
∏
k∈[m]

1Rk (aS(Rk ))

xi , xj categorical ⇒ two free variables

ψij [ai , aj ] =
∑

f∈F−{i,j}:af ∈Dom(Xf )

∑
b∈B:ab∈Dom(Xb)

∏
k∈[m]

1Rk (aS(Rk ))

{Rk}k∈[m] is the set of relations in the query Q; F and B are the sets of the

indices of the free and, respectively, bound variables in Q; S(Rk) is the set of

variables of Rk ; aS(Rk )) is a tuple over S(Rk)); 1E is the Kronecker delta that

evaluates to 1 (0) whenever the event E (not) holds.
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Expressing Σ, c, sY using SQL Queries

Queries for σij = 1
|D|
∑

(x,y)∈D xix
>
j (w/o factor 1

|D| ):

xi , xj continuous ⇒ no group-by variable

SELECT SUM (xi * xj) FROM D;

xi categorical, xj continuous ⇒ one group-by variable

SELECT xi, SUM(xj) FROM D GROUP BY xi;

xi , xj categorical ⇒ two group-by variables

SELECT xi, xj, SUM(1) FROM D GROUP BY xi, xj;

where D is the result of the feature extraction query.

This query encoding

is more compact than one-hot encoding

can sometimes be computed with lower complexity than D
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Zoom In: In-database vs. Out-of-database Learning

Feature Extraction

Query Q

DB

1 1

x
y

|DB|ρ
∗(Q)

ML Tool θ∗

MODEL
Model

Reformulation
Queries

σ11

...
σij

...

c1

...

Query

Optimizer

Factorized Evaluation Cost ≤
∑

i,j∈[|F |] |DB|
fhtw(σij ) � |DB|ρ

∗(Q)|

Σ, c

θ

J(θ)

∇J(θ)

converged?

Gradient Descent

No

Yes
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Complexity Analysis: The General Case

Complexity of learning models falls back to factorized computation of

aggregates over joins

[BKOZ13,OZ15,SOC16,ANR16]

Let

(V, E) = hypergraph of the feature extraction query Q

fhtwij = fractional hypertree width of the query that expresses σij over Q

DB = input database

The tensors σij and cj can be computed in time [ANNOS18a]

O

|V|2 · |E| · ∑
i,j∈[|F |]

(|DB|fhtwij + |σij |) · log |DB|

 .
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Complexity Analysis: Continuous Features Only

Recall the complexity in the general case:

O

|V|2 · |E| · ∑
i,j∈[|F |]

(|DB|fhtwij + |σij |) · log |DB|

 .

Complexity in case all features are continuous: [SOC16]

O(|V|2 · |E| · |F |2 · |DB|fhtw(Q) · log |DB|).

fhtwij becomes the fractional hypertree width fhtw of Q.
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Outline of Part 3: Optimization



Indicator Vectors under Functional Dependencies

Consider the functional dependency city → country and

country categories: vietnam, england

city categories: saigon, hanoi, oxford, leeds, bristol

The one-hot encoding enforces the following identities:

xvietnam = xsaigon + xhanoi

country is vietnam ≡ city is either saigon or hanoi

xvietnam = 1 ≡ either xsaigon = 1 or xhanoi = 1

xengland = xoxford + xleeds + xbristol

country is england ≡ city is either oxford, leeds, or bristol

xengland = 1 ≡ either xoxford = 1 or xleeds = 1 or xbristol = 1
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Indicator Vector Mappings

Identities due to one-hot encoding

xvietnam = xsaigon + xhanoi

xengland = xoxford + xleeds + xbristol

Encode xcountry as xcountry = Rxcity, where

R =

saigon hanoi oxford leeds bristol

1 1 0 0 0 vietnam

0 0 1 1 1 england

For instance, if city is saigon, i.e., xcity = [1, 0, 0, 0, 0]>,

then country is vietnam, i.e., xcountry = Rxcity = [1, 0]>.

[
1 1 0 0 0

0 0 1 1 1

]
1

0

0

0

0

 =

[
1

0

]
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Rewriting the Loss Function

Functional dependency: city → country

xcountry = Rxcity

Replace all occurrences of xcountry by Rxcity:

∑
f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry, xcountry〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+ 〈θcountry,Rxcity〉+ 〈θcity, xcity〉

=
∑

f∈F−{city,country}

〈θf , xf 〉+

〈
R>θcountry + θcity︸ ︷︷ ︸

γcity

, xcity

〉

We avoid the computation of the aggregates over xcountry.

We reparameterize and ignore parameters θcountry.

What about the penalty term in the objective function?
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Rewriting the Regularizer (1/2)

Functional dependency: city → country

xcountry = Rxcity γcity = R>θcountry + θcity

The penalty term is:

λ

2
‖θ‖2

2 =
λ

2

( ∑
j 6=city

‖θj‖2
2 +

∥∥∥γcity − R>θcountry

∥∥∥2

2
+ ‖θcountry‖2

2

)
We can optimize out θcountry by expressing it in terms of γcity:

1

λ

∂
(
λ
2
‖θ‖2

2

)
∂θcountry

= R(R>θcountry − γcity) + θcountry

By setting this to 0 we obtain θcountry in terms of γcity (Iv is the order-Nv

identity matrix):

θcountry = (Icountry + RR>)−1Rγcity = R(Icity + R>R)−1γcity
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Rewriting the Regularizer (2/2)

We obtained (Iv is the order-Nv identity matrix):

θcountry = (Icountry + RR>)−1Rγcity = R(Icity + R>R)−1γcity

The penalty term becomes (after several derivation steps)

λ

2
‖θ‖2

2 =
λ

2

( ∑
j 6=city

‖θj‖2
2 +

〈
(Icity + R>R)−1γcity,γcity

〉 )
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Outline of Part 3: Optimization



Linear Algebra is a Key Building Block for ML

Setting: Input matrices defined by queries over relational databases

Matrix A = Q(D)

Q is a feature extraction query and D a database

A has m = |Q(D)| rows = number of tuples in Q(D)

A has n columns (= variables in Q) that define features and label

In our setting: m� n, i.e., we train in the column space

We should avoid materializing A whenever possible.
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Why?

Examples of linear algebra computation needed for ML
DB

(assuming A ∈ Rm×n):

Matrix multiplication for learning linear regression models:

Σ = ATA ∈ Rn×n

Matrix inversion for learning under functional dependencies:

(Icity + RTR)−1

Matrix factorization

I QR decomposition

A = Q R, where Q ∈ Rm×n is orthogonal and R ∈ Rn×n is upper triangular

I Rank-k approximation of A

A ≈ X Y, where X ∈ Rm×k and Y ∈ Rk×n
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From A to Σ = ATA

The matrix Σ = ATA pops up in several ML-relevant computations, eg:

Least squares problem

Given A ∈ Rm×n, b ∈ Rm×1, find x ∈ Rn×1 that minimizes ‖Ax− b‖2.

If A has linearly independent columns, then the unique solution of the

least square problem is

x = (ATA)−1ATb

A† = (ATA)−1AT is called the Moore-Penrose pseudoinverse.

In-DB setting: The query defines the extended input matrix [A b].

Gram-Schmidt process for QR decomposition
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Classical QR Factorization

[
a1 . . . an

]
=
[
e1 . . . en

]

〈e1, a1〉 〈e1, a2〉 . . . 〈e1, an〉

0 〈e2, a2〉 . . . 〈e2, an〉
...

. . . . . .
...

0 0 . . . 〈en, an〉


A ∈ Rm×n. We do not discuss the categorical case here.

Q = [e1, . . . , en] ∈ Rm×n is orthogonal: ∀i , j ∈ [n], i 6= j : 〈ei , ej〉 = 0

R ∈ Rn×n is upper triangular: ∀i , j ∈ [n], i > j : Ri,j = 0

This is the thin QR decomposition.
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Applications of QR Factorization

Solve linear equations Ax = b for nonsingular A ∈ Rn×n

1. Decompose A as A = QR.

Then, QRx = b⇒ QTQRx = QTb⇒ Rx = QTb

2. Compute y = QTb

3. Solve Rx = y by back substitution

Variant: Solve k sets of linear equations with the same A

Use QR decomposition of A only once for all k sets!
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Applications of QR Factorization

Pseudo-inverse of a matrix with linearly independent columns

A† = (ATA)−1AT = ((QR)T(QR))−1(QR)T

= (RTQTQR)−1RTQT

= (RTR)−1RTQT (since QTQ = I)

= R−1R−TRTQT (since R is nonsingular)

= R−1QT

Inverse of a nonsingular square matrix

A−1 = (QR)−1 = R−1QT

Singular Value Decomposition (SVD) of A via Golub-Kahan

bidiagonalization of R
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Applications of QR Factorization

Least square problem

Given A ∈ Rm×n, b ∈ Rm×1, find x ∈ Rn×1 that minimizes ‖Ax− b‖2.

If A has linearly independent columns, then the unique solution of the

least square problem is

x̂ = (ATA)−1ATb = A†b = R−1QTb

For m > n this is an overdetermined system of linear equations.

In-DB setting: The query defines the extended input matrix [A b].
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QR Factorization using the Gram-Schmidt Process

Project the vector ak orthogonally onto the line spanned by vector uj :

projuj ak =
〈uj , ak〉
〈uj , uj〉

uj .

Gram-Schmidt orthogonalization:

∀k ∈ [n] : uk = ak −
∑

j∈[k−1]

projuj ak = ak −
∑

j∈[k−1]

〈uj , ak〉
〈uj , uj〉

uj .

The vectors in the orthogonal matrix Q are normalized:

Q =
[
e1 = u1

‖u1‖
, . . . , en = un

‖un‖

]
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Example: QR Factorization using Gram-Schmidt

Given A = [v1, v2, v3]. Task: Compute Q = [e1 = u1
‖u1‖

, e2 = u2
‖u2‖

, e3 = u3
‖u3‖

].

Source: Wikipedia
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How to Lower the Complexity of Gram-Schmidt?

Challenges:

How does not materializing A help? Q has the same dimension as A!

Trick 1: Only use R and do not require full Q in subsequent computation

The Gram-Schmidt process is inherently sequential and not parallelizable

Computing uk requires the computation of u1, . . . , uk−1 in Q.

Trick 2: Rewrite uk to refer to columns in A instead of Q
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Factorizing the QR Factorization

Express each vector uj as a linear combination of vectors a1, . . . , aj in A:

[
u1 . . . un

]
= −

[
a1 . . . an

]

c1,1 c1,2 . . . c1,n

0 c2,2 . . . c2,n

...
. . .

. . .
...

0 0 0 cn,n


That is, uk = −

∑
j∈[k] cj,kaj . The coefficients cj,k are:

∀j ∈ [k − 1] : cj,k =
∑

i∈[j,k−1]

ui,k
di
· cj,i ck,k = −1

∀j ∈ [k − 1] : uj,k =
∑
l∈[j]

cl,j · 〈al , ak〉 ∀i ∈ [n] : di =
∑
l∈[i ]

∑
p∈[i ]

cl,i · cp,i · 〈al , ap〉

The coefficients are defined by FAQs over the entries in Σ = ATA
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Expressing Q

Q = AC, where

‖uk‖ =
√
〈uk , uk〉 =

√∑
l∈[k]

∑
p∈[k]

cl,k · cp,k · 〈al , ap〉 =
√

dk

C =
[
c1 . . . cn

]
=



c1,1√
d1

c1,2√
d1

. . .
c1,n√

d1

0
c2,2√

d2
. . .

c2,n√
d2

...
. . .

. . .
...

0 0 0
cn,n√
dn
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Expressing R

Entries in the upper triangular R are 〈ei , aj〉 =
〈ui ,aj〉√

di
= 〈Aci , aj〉 , ∀i ≤ j . Then,

R =


〈
c1,A

Ta1

〉 〈
c1,A

Ta2

〉
. . .

〈
c1,A

Tan

〉
0

〈
c2,A

Ta2

〉
. . .

〈
c2,A

Tan

〉
...

. . . . . .
...

0 0 . . .
〈
cn,A

Tan

〉



The entries in R are defined by FAQs over Σ = ATA = [ATa1, . . . ,A
Tan]
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Revisiting The Least Squares Problem

Given A ∈ Rm×n, b ∈ Rm×1, find x ∈ Rn×1 that minimizes ‖Ax− b‖2.

In-DB setting: The query defines the extended input matrix [A b].

Solution x̂ = R−1QTb requires:

The inverse R−1 of the upper triangular matrix R; or back substitution

The vector QTb computable directly over the input data

QTb = (AC)Tb = CTATb = CT


〈a1, b〉

...

〈an, b〉



The dot products 〈aj , b〉 are FAQs computable without A!
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Computing Coefficient Matrix C without A

Data complexity of C is the same as of Σ

Given Σ, O(n3) time to compute matrix C and vector d

There are n(n − 2)/2 entries in coefficient matrix C that are not 0 and -1

I Each of them takes 3n arithmetic operations

There are n entries in the vector d

I Entry di takes i2 arithmetic operations

Computing sparse-encoded C from sparse-encoded Σ a bit tricky

Same complexity overhead as for Σ

Nicely parallelizable, accounting for the dependencies between entries in C
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Our Journey So Far with QR Factorization

F-GS system on top of LMFAO for QR factorization of matrices defined over

database joins

33 numerical + 3,702 categorical features
I Σ computed on one core by LMFAO in 18 sec

I C, d, and R (and Linear Regression on top) computed on one core by F-GS

in 18 sec

I F-GS on 8 cores is 3× faster than on one core

I Any of C, d, and R cannot be computed by LAPACK

33 numerical + 55 categorical features

I Σ computed on one core by LMFAO in 6.4 sec

I C, d, and R (and Linear Regression on top) computed one one core by F-GS

in 1 sec

I R can be computed by LAPACK on one core in 313 sec

It also needs to read in the data: + ≈ 70 sec

I LAPACK on 8 cores is 7× faster than on one core

Retailer dataset (86M), acyclic natural join of 5 relations, 26x compression by factorization;

Intel i7-4770 3.40GHz/64bit/32GB, Linux 3.13.0, g++4.8.4, libblas3 1.2 (one core), OpenBLAS

0.2.8-6ubuntu1 (multicore)
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Beyond Linear Regression

This approach has been or is applied to a host of ML models:

Polynomial regression (done)

Factorization machines (done)

Decision trees (done)

Principal component analysis (done)

Generalised low-rank models (on-going)

Sum-product networks (on-going)

K-means & k-median clustering (on-going)

Gradient boosting decision trees (on-going)

Random forests (on-going)

Some models seem inherently hard for in-db learning

Logistic regression (unclear)
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Beyond Polynomial Loss

There are common loss functions that are:

Convex,

Non-differentiable, but

Admit subgradients with respect to model parameters.

Examples:

Hinge (used for linear SVM, ReLU)

J(θ) = max(0, 1− y · 〈θ, x〉)

Huber, `1, scalene, fractional, ordinal, interval

Their subgradients may not be as factorisable as the gradient of the square loss.
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QUIZ on Optimization
Assume that the natural join of the following relations provides the features we

use to predict revenue:

Sales(store id, product id, quantity, revenue),

Product(product id, color),

Store(store id, distance city center).

Variables revenue, quantity, and distance city center stand for

continuous features, while product id and color for categorical features.

1. Give the FAQs required to compute the gradient of the squares loss

function for learning a ridge linear regression models with the above

features. Give the same for a polynomial regression model of degree two.

2. We know that product id functionally determines color. Give a rewriting

of the objective function that exploits the functional dependency.

3. The FAQs require the computation of a lot of common sub-problems. Can

you think of ways to share as much computation as possible?
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