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Goal of This Course

‘ Introduction to a principled approach to in-database computation

This course starts where mainstream databases courses finish.

= Part 1: Joins

» Basic building blocks in query languages. Studied extensively.

> Systematic study of redundancy in the computation and representation of

join results [0Z12,0715,K018]

> Worst-case optimal join algorithms [NPRR12,NRR13,V14,0715,ANS17]

m Part 2: Aggregates

m Part 3: Optimization
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Outline of Part 1: Joins

Introduction by Examples
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Join Queries

Q(ALU---UA,) = Ri(A1),...,Ru(An)
head body

m Query variables: A; U---U A,. All variables in the body occur in the head.
m Relational atoms: Ri,..., R,

= Natural join: Same variable occurs in different relational atoms

Examples of bodies of queries used in the following slides:
= Path: O(customer, day, dish), D(dish, item), | (item, price)
m Path:  Ry(A, B), Ry(B, C), R3(C, D)
m Acyclic: R(A,B,C),S(A,B,D), T(A,E), U(E,F).
m Triangle: Ri(A, B), R:(A, C), R3(B, C)
m Loop: R(A1, A2), S(Az, A3), T(As, As), W(Ag, A1)
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Join Example: Itemized Customer Orders

Orders (O for short) Dish (D for short) Items (I for short)
customer day dish dish item item price
Elise Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday  hotdog burger bun bun 2
Joe Friday  hotdog hotdog bun sausage 4

hotdog onion

hotdog sausage

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise =~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2

6/99



Join Example: Listing the Triangles in the Database
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Outline of Part 1: Joins

Decompositions and Variable Orders
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Join Hypergraphs

We associate a (multi)hypergraph H = (V, £) with every join query Q
m Each variable in Q is a node in V
m The set of variables of each relation symbol in Q is a (hyper)edge in &€

Example: Triangle query Ri(A, B), Rx(A, C), Rs(B, C)

s V={AB,C}
» £ ={{A B},{A C},{B,C}}
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Join Hypergraphs

We associate a (multi)hypergraph H = (V, £) with every join query Q
m Each variable in Q is a node in V

m The set of variables of each relation symbol in Q is a (hyper)edge in &€

Example: Order query O(cust,day,dish), D(dish, item), /(item, price)

m V = {cust,day,dish, item, price}
m & = {{cust,day,dish}, {dish,item}, {item, price}}
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Hypertree Decompositions

Definition[GLS99]: A (hypertree) decomposition 7 of the hypergraph (V, ) of
a query Q is a pair (T,x), where

m T is atree

m x is a function mapping each node in T to a subset of V called bag.

Properties of a decomposition T
m Coverage: Ve € £, there must be a node t € T such that e C x(t).

m Connectivity: Vv € V, {t |t € T,v € x(t)} forms a connected subtree.

The hypergraph of the query A hypertree decomposition

ﬂ (38
B>
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Hypertree Decompositions

Definition[GLS99]: A (hypertree) decomposition 7 of the hypergraph (V, ) of
a query Q is a pair (T,x), where
m T is a tree

m X is a function mapping each node in T to a subset of V called bag.
Properties of the decomposition 7:
m Coverage: Ve € £, there must be a node t € T such that e C x(t).

m Connectivity: Vv € V, {t |t € T,v € x(t)} forms a connected subtree.

The hypergraph of the triangle query A hypertree decomposition
Ri(A, B), R2(A, C), Rs(B, C)
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Variable Orders

Definition[OZ15]: A variable order A for a query Q is a pair (F, key), where
m F is a rooted forest with one node per variable in Q
m key is a function mapping each variable A to a subset of its ancestor
variables in F.

Properties of a variable order A for Q:

m For each relation symbol, its variables lie along the same root-to-leaf path

in F. For any such variables A and B, A € key(B) if A is an ancestor of B.

m For every child B of A, key(B) C key(A) U{A}.

Possible variable orders for the path query Ri(A, B), Rx(B, C), Rs(C, D):

A key(A) =0 B key(B) =0

;L key(B) = {A} key(A) ={B} A C  key(C)={B}
‘c key(C) = {B} D key(D)={C}
£‘> key(D) = {C}
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Variable Orders

Definition[OZ15]: A variable order A for a query Q is a pair (F, key), where
m F is a rooted forest with one node per variable in Q

m key is a function mapping each variable A to a subset of its ancestor
variables in F.

Properties of a variable order A for Q:

m For each relation symbol, its variables lie along the same root-to-leaf path

in F. For any such variables A and B, A € key(B) if A is an ancestor of B.

m For every child B of A, key(B) C key(A) U {A}.

Possible variable orders for the triangle query Ri(A, B), R2(A, C), R3(B, C):

A key(A)=10 B key(B)=10 C key(C)=10
T key(B) = {A} T key(A) = {B) T key(B) = {C}
C key(C) = {A, B} C key(C) = {A, B} A key(A) = {B, C}
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Hypertree Decompositions < Variable Orders

From variable order A to hypertree decomposition 7 [0Z15]
m For each node A in A, create a bag key(A) U {A}.
m The bag for A is connected to the bags for its children and parent.

m Optionally, remove redundant bags

Example: Triangle query Ri(A, B), Rx(A, C), Rs(B, C)

,‘4 key(A) =10 e

Tkey(B):{A} = =

¢ key()= (a8} (ABC)
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Hypertree Decompositions < Variable Orders

From variable order A to hypertree decomposition 7 [0Z15]

m For each node A in A, create a bag key(A) U {A}.
m The bag for A is connected to the bags for its children and parent.

= Optionally, remove redundant bags

Example: Path query Ri(A, B), R:(B, C), Rs(C, D)

key(A) = 0 o

kye)=(ar = (ag) = (a6)
key(©) =18} (B.C) (B.c)
ky(0)=(c)  (c.0) (c0)

O—a——>
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.

Example: Triangle query Ri(A, B), R:(A, C), Rs(B, C)
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.
Example: Triangle query Ri(A, B), R:(A, C), Rs(B, C)

A key(A)=10
Step 1:

A is removed from T =

and inserted into A
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.
Example: Triangle query Ri(A, B), R:(A, C), Rs(B, C)

A key(A) =90
Step 2: ‘

B is removed from T @ = B key(B) = {A}

and inserted into A
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.
Example: Triangle query Ri(A, B), R:(A, C), Rs(B, C)

A key(A) =90
Step 3: ‘

C is removed from T O = B key(B) = {A}

and inserted into A ‘
C key(C)={A, B}

20/99



Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.

Example: Path query Ri(A, B), R:(B, C), Rs(C, D)
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.
Example: Path query Ri(A, B), R:(B, C), Rs(C, D)

A key(A) =0

Step 1:
A is removed from T @ =
and inserted into A
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.
Example: Path query Ri(A, B), R:(B, C), Rs(C, D)

A key(A) =10

Step 2: B key(B) = {A}

B is removed from T e =
and inserted into A
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A: [0Z15]

m Create a node A in A for a variable A in the top bag in T

m Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and
create children of Ain A

Update key for each variable at each step.

Example: Path query Ri(A, B), R:(B, C), Rs(C, D)

A key(A)=0
Step 3: B key(B) = {A}
C is removed from T =
and inserted into A C  key(C)={B}
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Hypertree Decompositions < Variable Orders

From hypertree decomposition 7 to variable order A:

Example: Path query Ri(A, B), R:(B, C), Rs(C, D)

[0715]

Create a node A in A for a variable A in the top bag in T

Recurse with 7 where A is removed from all bags in 7.

If top bag empty, then recurse independently on each of its child bags and

create children of Ain A

Update key for each variable at each step.

Step 4:
D is removed from T

and inserted into A

OS—Aa—w—>x

key(A) = 0

key(B) = {A}
key(C) = {B}
key(D) = {C}
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Outline of Part 1: Joins

Size Bounds for Join Results
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How Can We Bound the Size of the Join Result?
Example: the path query Ri(A, B), R:(B, C), Rs(C, D)
m Assumption: All relations have size N.
m The query result is included in the result of Ri(A, B), R3(C, D)

> Its size is upper bounded by N? = |Ry| x |Rs|
» All variables are "covered” by the relations R; and R3

m There are databases for which the result size is at least N?
> Let Ry = [N] x {1}, Ro = {1} x [N], Rs = [N] x {1}.
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How Can We Bound the Size of the Join Result?
Example: the path query Ri(A, B), R:(B, C), Rs(C, D)
m Assumption: All relations have size N.
m The query result is included in the result of Ri(A, B), R3(C, D)
> Its size is upper bounded by N? = |Ry| x |Rs|

» All variables are "covered” by the relations R; and R3

m There are databases for which the result size is at least N?
> Let Ry = [N] x {1}, Ro = {1} x [N], Rs = [N] x {1}.

= Conclusion: Size of the query result is ©(N?) for some input classes
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How Can We Bound the Size of the Join Result?
Example: the triangle query Ri(A, B), R:(A, C), R3(B, C)
m Assumption: All relations have size N.
m The query result is included in the result of Ri(A, B), Rs(B, C)
> Its size is upper bounded by N? = |Ry| x |Rs|

» All variables are " covered” by the relations R; and R3

m There are databases for which the result size is at least N
> Let Ry = [N] x {1}, R: = [N] x {1}, Rs 2 {(1. 1)}
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How Can We Bound the Size of the Join Result?

Example: the triangle query Ri(A, B), R:(A, C), R3(B, C)
m Assumption: All relations have size N.

m The query result is included in the result of Ri(A, B), Rs(B, C)
> Its size is upper bounded by N? = |Ry| x |Rs|
» All variables are " covered” by the relations R; and R3

m There are databases for which the result size is at least N
> Let Ry = [N] x {1}, R: = [N] x {1}, Rs 2 {(1. 1)}

m Conclusion: Size gap between the N? upper bound and the N lower bound!

Question: Can we close this gap and give tight size bounds?
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Edge Covers and Independent Sets
We can generalize the previous examples as follows:

For the size upper bound:
m Cover all nodes (variables) by k edges (relations) = size < N*.

m This is an edge cover of the query hypergraph!

For the size lower bound:
= m independent nodes = construct database such that size > N™.

m This is an independent set of the query hypergraph!

max, = |IndependentSet(Q)| < |EdgeCover(Q)| = min,

‘maxm and min, do not necessarily meet! ‘

Can we further refine this analysis?
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The Fractional Edge Cover Number p*(Q)

The two bounds meet if we take their fractional versions [AGMO08]

m Fractional edge cover of Q with weight k = size < N*.

m Fractional independent set with weight m = size > N™.

By duality of linear programming:

max, = |FractionallndependentSet(Q)| = |FractionalEdgeCover(Q)| = ming

m This is the fractional edge cover number p*(Q)!

For query Q and database of size N, the query result has size O(N*" (9).
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The Fractional Edge Cover Number p*(Q)

For a join query Q(A1 U ---UA;) = Ri(A1),. .., Ra(An),
p*(Q) is the cost of an optimal solution to the linear program:

minimize 37, . Xr,
SubJECt to Zi:edge R; covers node A XR; >1VAe UJ'G["] Aj’

xg, > 0 Vi € [n].

B xg, is the weight of edge (relation) R; in the hypergraph of Q
m Each node (variable) has to be covered by edges with sum of weights > 1

= In the integer program variant for the edge cover, xg, € {0,1}
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Example: Compute the Fractional Edge Cover (1/3)

Consider the join query Q: R(A, B, C),S(A, B, D), T(A,E), U(E,F).

5A

m The three edges R, S, U can cover all nodes.
FractionalEdgeCover(Q) < 3

m Each node C, D, and F must be covered by a distinct edge.
FractionallndependentSet(Q) > 3

=p"(Q)=3

= Size < N® and for some inputs is O(N?).
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Example: Compute the Fractional Edge Cover (2/3)
Consider the triangle query: Ri(A, B), R:(A, C), R3(B, C).

minimize Xr, + Xr, + Xr,

subject to

A xr + Xg >1
B: xg + xg >1
C: XrR, + xry 21

xp, 20 xg, 20 xg, >0

Our previous size upper bound was N?:

m This is obtained by setting any two of xg,, Xr,, Xg, to 1.

What is the fractional edge cover number for the triangle query?
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Example: Compute the Fractional Edge Cover (2/3)
Consider the triangle query: Ri(A, B), R:(A, C), R3(B, C).

minimize Xr, + Xr, + Xr,

subject to

A xr + Xg >1
B: xg + xg >1
C: XrR, + xry 21

xp, 20 xg, 20 xg, >0

Our previous size upper bound was N?:

m This is obtained by setting any two of xg,, Xr,, Xg, to 1.
What is the fractional edge cover number for the triangle query?
We can do better: xg, = xg, = xg, = 1/2. Then, p* =3/2.

Lower bound reaches N*/? for Ry = R, = Rs = [V/N] x [V/N].
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Example: Compute the Fractional Edge Cover (3/3)
Consider the (4—cyc|e) join: R(Al, Az), S(Az, A3), T(A3, A4), W(A4,A1).

The linear program for its fractional edge cover number:

minimize xg + xs + X1 + xw

subject to

Al xr + xw >1
At xg  + x5 >1
Az : xs 4+ XT >1
Ag XT 4+ Xxw >1

x>0 x>0 x>0 xw=>0

Possible solution: xg = xr = 1. Another solution: xs = xyv = 1. Then, p* = 2.

Lower bound reaches N for R= T = [N] x {1} and S = W = {1} x [N].
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Historical Note on the Fractional Edge Cover Number

Tight size bounds via p* have been known from earlier works in other contexts:

m (special case) Loomis-Whitney inequality [LW49]
m (general case) number of occurrences of a subgraph in a graph [A81]
m generalization of Loomis-Whitney that subsumes the AGM bound [BT95]

Recent insightful travel through the history of this result [H18]
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Refinement under Cardinality Constraints

Common case in practice:
= Relations have different sizes

m Small-size projections of relations may be added to the join query

Recall the linear program for computing the fractional edge cover number
p*(Q) of a join query Q(A1U---UA,) = Ri(A1),...,R.(An):

minimize >, Xg

subject to Zi:edge R; covers node A XR; 21VAc UJE["]

xr, > 0 Vi € [n].
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Refinement under Cardinality Constraints

Common case in practice:
= Relations have different sizes

m Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a
join query Q(A1U---UA,) = Ri(A1),...,Ra(An):

minimize N2i€l] i
SubjeCt to Zi:edge R; covers node A XR; >1VAe Uje["] Aj’

xr, > 0 Vi € [n].

Assumption: All relations have the same size N.
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Refinement under Cardinality Constraints

Common case in practice:
= Relations have different sizes

m Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a
join query Q(A1U---UA,) = Ri(A1),...,Ra(An):

minimize [, N
subject to Zi:edge R; covers node A XR; 21VAc UJE["]

xr, > 0 Vi € [n].

Assumption: All relations have the same size N.
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Refinement under Cardinality Constraints

Common case in practice:
= Relations have different sizes

m Small-size projections of relations may be added to the join query

Add relation sizes into the linear program that computes the result size of a
join query Q(A1U---UA,) = Ri(A1),...,Ra(An):

minimize [[;cp,; N
subject to Zi:edge R; covers node A XR; 21VAc UJE["]

xr, > 0 Vi € [n].

Assumption: Relation R; has size N;, Vi € [n].
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Size Bounds for Factorized Representations
of Join Results
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Recall the Itemized Customer Orders Example

Orders (O for short) Dish (D for short) Items (I for short)
customer day dish dish item item price
Elise Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday  hotdog burger bun bun 2
Joe Friday  hotdog hotdog bun sausage 4

hotdog onion

hotdog sausage

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise =~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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Factor Out Common Data Blocks

(Elise)

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday  burger  onion 2
Elise Friday burger bun 2

The listing representation of the above query result is:

X
X
X
X
X
X

(Monday)
(Monday)
(Monday)
(Friday)
(Friday)
(Friday)

X X X X X X

(burger)
(burger)
(burger)
(burger)
(burger)
(burger)

X
X
X
X
X
X

(patty)

onion
(bun)

(patty)

onion

(bun)

X X X X X X

(6)
2
(2)
(6)

2

2

c ¢ c ccc

It uses relational product (x), union (U), and data (singleton relations).

m The attribute names are not shown to avoid clutter.
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This is How A Factorized Join Looks Like!

/ b
dish (burger) (hotdog)
[ [
X X
u u U u
/N PN \ PN
day item (Monday) (Friday) (patty) (bun) (onion) (Friday)  (bun) (onion) (sausage)
[ [ [ [ [ [ [ [ [
X X X X X X X X X
\ \ \ \ \ \ \ \ \
u u u u U U U u u
| | | | | /7 N\ | | |
customer  price (Elise)  (Elise) (6) (2) (2) (Joe) (Steve) (2) 2) (4)
Var order Factorized representation of the join result

There are several algebraically equivalent factorized representations defined:
m by distributivity of product over union and their commutativity;

m as groundings of variable orders.
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.. Now with Further Compression using Caching

/ U \
O dish (burger) (hotdog)
| |

@] U @] U

{dish} {dish} /N IR SN [
day item (Monday) (Friday) (patty) (bun) (onion) (bun){onion)(sausage)  (Friday)

| | | | | | | | |

X X X X X X __x X X

\ \ \ 47 -7 \ \

{dish, @] @] @] U u u U
day} {item} I I I I I I VRN

customer  price (Elise)  (Elise) (6) (2) (2)

(4) (Joe) (Steve)
Observation:

® price is under item, which is under dish, but only depends on item,
m .. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!
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Same Data, Different Factorization

(@]
(Friday)

(Monday)

day

-X—D—-%

o
®
3
= 2
B g /% .
-X—D—E-X—D—F-X—D—0l
o 2 \ 2
T ~
3~ X—D2—a
o
] -
9@ -X—D0—-%
3
n ¥ /% .
- X—=D—=—0Q0 -X—D—=82-X—D— % —=X—D—0l
2 Q /O e
< ~
T ~
S-x—D-1o
5 .
2-Xx—D-Q
- Q
T 5 /=
< —
L _x—D-PV_x—D—3F-x—D2—-4J
w 3 Q ~
~ 2 N\ =
2 B
FTXTI2-C
2
5 .
=X —=D—al
~ o
0 g /= -
-Xx—D—2 -x—D-¥-_x—D—-3-xXx—D—J
w :M /NIW =
2
2 o~
RTXTI-C
Q
2
A
£ w
<=
S kg g ¢
3 = &
O
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and Further Compressed using Caching

(@]
/ \ '
(Friday)

1] day (Monday)
| |
X X
| |
U @]
{day} | 1
customer (Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
| | | |
U U @] @]
{ customer, | | | |
dish (burger) (burger) (hotdog) (hotdog)
day} | I I I
X - X X P X
| -7 | -
u-- u--
{dish} N PR
item (patty) (bun) (onion) (bun) (onion)(sausage)
| | | | | |
X X X L -=X_--X X
| | [ |
U u--"g--° @]
{item} | | | |
price ®© @ @ ()
46/99



Which factorization should we choose?

The size of a factorization is the number of its values.

Example:

m F; is factorized, F; is a listing representation
| F1 = F2
m BUT |A|=m+n<|FR]=mxn.

How much space does factorization save over the listing representation?
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Size Bounds for Join Results

Given a join query Q, for any database of size N, the join result admits

= a listing representation of size O(N* (@), [Lw49,A81,BT95,AGMO08]
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Size Bounds for Join Results

Given a join query Q, for any database of size N, the join result admits

= a listing representation of size O(N* (@), [Lw49,A81,BT95,AGMO08]
= a factorization without caching of size O(N*(9). [0Z12]
= a factorization with caching of size O(N™*(Q)). [0Z15]
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Size Bounds for Join Results

Given a join query @, for any database of size N, the join result admits

= a listing representation of size O(N* (@), [LW49,A81,BT95,AGMO08]
= a factorization without caching of size O(N*(9). [0Z12]
= a factorization with caching of size O(N™*(Q)). [0Z15]

1< mw(Q) < s(Q) = rr(Q) < |Q

~—~
up to log | Q| up to | Q|

|@] is the number of relations in Q

p*(Q) is the fractional edge cover number of Q

s(Q) is the factorization width of Q
fhtw(Q) is the fractional hypertree width of Q [M10]
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Size Bounds for Join Results

Given a join query @, for any database of size N, the join result admits

= a listing representation of size O(N* (@), [LW49,A81,BT95,AGMO08]
= a factorization without caching of size O(N*(9). [0Z12]
= a factorization with caching of size O(N™*(Q)). [0Z15]

These size bounds are asymptotically tight!

= Best possible size bounds for factorized representations over variable
orders of @ and for listing representation, but not database optimal!

There exists arbitrarily large databases for which

> the listing representation has size Q(NP*(Q))

> the factorization with/without caching over any variable order of Q has size
Q(N5(Q)) and Q(NTMQ)) respectively.
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Example: The Factorization Width s

:
Vi N
B

The structure of the factorization over the above variable order A:
U (@ x U (& x (Ute) x (Ut@n) x U (&< (U#))
acA beB ceC deD ecE fEF

The number of values for a variable is dictated by the number of valid tuples of
values for its ancestors in A:

m One value (f) for each tuple (a, e, f) in the join result.

Size of factorization = sum of sizes of results of subqueries along paths.
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Example: The Factorization Width s

m The factorization width for A is the largest p* over subqueries defined by
root-to-leaf paths in A

m 5(Q) is the minimum factorization width over all variable orders of Q
In our example:

m Path A-E—F has fractional edge cover number 2.
= The number of F-values is < N?, but can be ~ N?.

m All other root-to-leaf paths have fractional edge cover number 1.
= The number of other values is < N.

s(Q)=2 = Factorization size is O(N?)

Recall that p*(Q) =3 = Listing representation size is O(N?)
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Example: The Fractional Hypertree Width fhtw

Idea: Avoid repeating identical expressions, store them once and use pointers.

v\ T A key(A) =0
R ‘E key(B) ={A} B 7N E key(E) = {A}
d ) NN
U
S

c D F
key(C) = {A,B}  key(D) ={A,B} key(F)={E}

U [@) x---x U () x (LU(N))]
Observation:

m Variable F only depends on E and not on A: key(F) = {E}

= A value (e) maps to the same union |J. ;)¢ (f) regardless of its pairings
with A-values.

= Define U. = |, r)cy(f) once for each value (e) and reuse it
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Example: The Fractional Hypertree Width fhtw

Idea: Avoid repeating identical expressions, store them once and use pointers.

v\ T A key(A) =0
R ‘E key(B) ={A} B 7N E key(E) = {A}
d ) NN
U
S

c D F
key(C) = {A,B}  key(D) ={A,B} key(F)={E}

A factorization with caching would be:

U [@) x - x | (o) x U)]; {ue: U <f>}

acA e€E (e,F)eU

m fhtw for A is the largest p™(Quey(x)u{x}) Over subqueries Quey(x)u{x}
defined by the variables key(X) U {X} for each variable X in A

m fhtw(Q) is the minimum fhtw over all variable orders of Q

In our example: fhtw(Q) =1 < s(Q) =2 < p*(Q) = 3.
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Alternative Characterizations of fhtw

The fractional hypertree width fhtw has been originally defined for hypertree
decompositions. [M10]

= Given a join query Q.

m Let T be the set of hypertree decompositions of the hypergraph of Q.

fhtw(Q) = min(r et MaxXneT p* (Qy(n))
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Alternative Characterizations of fhtw

The fractional hypertree width fhtw has been originally defined for hypertree
decompositions. [M10]

= Given a join query Q.

m Let T be the set of hypertree decompositions of the hypergraph of Q.

fhtw(Q) = min(r et MaxXneT p* (Qy(n))

Alternative characterization of the fractional hypertree width fhtw using the
mapping between hypertree decompositions and variable orders [0Z15]

= Given a join query Q.

m Let VO be the set of variable orders of Q.

fhtW(Q) = min(F,key)eVO maXver p*(ley(v)u{v})
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Compression by Factorization in Practice
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Compression Contest: Factorized vs. Zipped Relations

Compression ratio

100 |

+— 4
Tabular/Factorized —+— |
Tabular/Gzip(Tabular) —+—
Factorized/Gzip(Factorized) —+— 4
+ + — - + + -+ 3
+—
1 1 1 1 1 1
1 2 4 8 16 32

Database Scale

Result of query Orders X Dish X Items
m Tabular = listing representation in CSV text format
m Gzip (compression level 6) outputs binary format

[BKOZ13]

m Factorized representation in text format (each digit takes one character)

Observations:

m Gzip does not exploit distant repetitions!

m Factorizations can be arbitrarily more succinct than gzipped relations.
m Gzipping factorizations improves the compression by 3x.
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Factorization Gains in Practice (1/4)

Retailer dataset used for LogicBlox analytics

m Relations: Inventory (84M), Sales (1.5M), Clearance (368K), Promotions
(183K), Census (1K), Location (1K).

m Compression factors (caching not used):

> 26.61x for natural join of Inventory, Census, Location.

> 159.59x for natural join of Inventory, Sales, Clearance, Promotions
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Factorization Gains in Practice (2/4)
LastFM public dataset
m Relations: UserArtists (93K), UserFriends (25K), TaggedArtists (186K).
m Compression factors:
> 143.54x for joining two copies of Userartists and Userfriends
With caching: 982.86x
> 253.34x when also joining on TaggedArtists

> 2.53x/ 3.04x/ 924.46x for triangle/4-clique/bowtie query on UserFriends

> 9213.51x/ 552Kx/ >86Mx for versions of triangle/4-clique/bowtie queries
with copies for UserArtists for each UserFriend copy
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Factorization Gains in Practice (3/4)

Twitter public dataset

m Relation: Follower-Followee (1M)

m Compression factors:
> 2.69x for triangle query

> 3.48x for 4-clique query

> 4918.73x for bowtie query
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Factorization Gains in Practice (4/4)

Yelp Dataset Challenge

m Relations: Business (174K), User (1.3M), Review (5.2M),
Category(667K), Attribute (1.3M)

m Compression factors:

> 39.43x for natural join of Business, User, Review, Attribute (with caching)

> 185.87x for natural join of Business, User, Review, Attribute, Category
(with caching)
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Outline of Part 1: Joins

Worst-Case Optimal Join Algorithms
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How Fast Can We Compute Join Results?

Given a join query @, for any database of size IV, the join result can be
computed in time

» O(N?"(@) as listing representation [NPRR12,V14]
m O(N*(9) as factorization without caching [0Z15]
m O(N™™(®)) as factorization with caching [0Z15]

These upper bounds essentially follow the succinctness gap. They are:

= worst-case optimal (modulo log N) within the given representation model

® with respect to data complexity

» additional quadratic factor in the number of variables and linear factor in
the number of relations in Q

62/99



Example: Computing the Factorized Join Result with FDB

Our join: O(customer, day, dish), D(dish, item), I(item, price)

can be grounded to a factorized representation as follows:

Variable Order FDB execution plan

d: sh Uo(.,., dishy, D(dish, ) (dish)

/ \ ‘
X
{d:sh} {dish} ey T

item Uo(.day.aisn) (day) Ub(dish, item) (item)
X X
{dlsl}7 . , | |
day item ‘
customer price Uo(customer, day,dish) (customer) U icem, price) (Price)
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Example: Computing the Factorized Join Result with FDB

UO(.,.,dish),D(dish,_) (dish)

X

Uox.day. aisn) (d2Y) Ubaish, item) {item)
X X
UO(c,day,dish)<C> Ul(r'tem,p) (p)
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Example: Computing the Factorized Join Result with FDB

[Uo -, dish),D(dish, )(d’5h>]

X

Uox.day. aisn) (d2Y) Ubaish, item) {item)
X X
UO(c,day,dish)<C> Ul(r'tem,p) (p)
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Example: Computing the Factorized Join Result with FDB

/U\

(burger hotdog}
Uo(.,day, burger) (9ay) Ub(burger, item) {item) Ub(rotdos item) {item) Uo.,day, hotdoz) (day)
X X X X
U0@¢W@@yﬂc> Uu@mmﬂp> U«hmmﬂp> Uoudwmmmm<®
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Example: Computing the Factorized Join Result with FDB

<hotdog>
Ub(burger, item) {item) Ub(rotdos item) {item) Uo.,day, hotdog) (daY)
X X X
U0@¢W@@yﬂc> Uu@mmﬂp> U«hmmﬂp> Uoudwmmmm<®
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
x
5 \ / \
SN _
(Monday)  (Friday) Ub(burger, item) {item) Ub(hotdo  item) (item) Uo(, day, hotcior) (day)
x X | |
X X X
UO(c, friday , burger) (c) Ul(ftem,p) (p) Ul(ftem,p) (p) UO(c,day, hotdog) (c)

UO(c,monday,burger) (c)
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
/ :
L / \
SN _
(Monday)  (Friday) Ub(burger, item) {item) Ub(hotdo  item) (item) Uo(, day, hotcior) (day)
| |
X X | |
X X X
UO(c, friday , burger) (c) Ul(ftem,p) (p) Ul(ftem,p) (p) UO(c,day, hotdog) (c)

0O(c,monday , burger) (c
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
/ :
] / \
VRN ]
(Monday)  (Friday) Ub(burger, item) {item) Ub(rotdos item) {item) Uo.,day, hotdog) (daY)
X X X
Uu@mmﬂp> U«hmmﬂp> Uoudwmmmm<®
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Example: Computing the Factorized Join Result with FDB

V]

(burger) / <hotdog>
|
/ :
] / \
VRN ]
(Monday)  (Friday) Ub(burger, item) {item) Ub(rotdos item) {item) Uo.,day, hotdog) (daY)
| | | |
X X X
Uu@mmﬂp> U«hmmﬂp> Uoudwmmmm<®
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Example: Computing the Factorized Join Result with FDB

(burger) ( hotdog}
|
/ :
L / \
SN _
(Monday)  (Friday) Ub(burger, item) {item) Ub(hotdo  item) (item) Uo(,day, hotcior) {day)
| |
X X | |
| X X X
U U]
i i | | |
(Elise) (Elise) Uiitem, p) (P) U (item,p) (P) Uo(c, day, hotaior) (€)
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Example: Computing the Factorized Join Result with FDB

(burger) ( hotdog}
|
/ :
L / \
SN :
(Monday)  (Friday) Ub(burger, item) {item) Ub(hotdo  item) (item) Uo(,day, hotcior) {day)
| |
X X |
| | X X X
U U]
i i | | |
(Elise) (Elise) Uiitem, p) (P) U (item,p) (P) Uo(c, day, hotaior) (€)

64/99



Example: Computing the Factorized Join Result with FDB

(burger) <hotdog>
|
/ :
U U / \
SN SN
(Monday)  (Friday) (patty)  (bun)  (onion) | Up(otdos item) {iteM) Uo(.,day, hotdeoz) (aY)
| | t t t
X X X X X |
| | X X
U U] | |
| |
(Elise) (Elise)  Uigpatey,p)(P) Uionion,py (P) U (item,p) (P) Uo(c, day, hotaior) (€)

U/(bun,p)(P>
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Example: Computing the Factorized Join Result with FDB

(burger) <hotdog>
|
/ X \
U U / \
7N SN
(Monday)  (Friday) (patty)  (bun)  (onion)  Up(otdos item) (itEM) Uo(.,day, hotdeoz) (aY)
| | | | |
X X X X X |
I | X X
7 7 | |
| |
(Elise) (Elise) (Ui (patey,p) (P) Uionion,p) (P) Ui (item, p) (P) Uo(c,day, hotor) (€)
Ul(bun,p)<p>
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
/ X \
U U / \
SN SN
(Monday)  (Friday) (patty)  (bun)  (onion) UD hotdog ,item) (item) Uo( ,day, houh,,)(da,")
| | | | |
X X X X X |
| | X X
U U U | |
| | |
(Elise) (Elise) (6) Uionion,py (P) U (item,p) (P) Uo(c, day, hotaior) (€)
cache!

~

Ul(bun,p)<p

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
/ X \
U U / \
SN PN
(Monday)  (Friday) (patty)  (bun)  (onion) UD hotdog ,item) (item) Uo( ,day, houh,,)(da,")
| | | | |
X X X X X |
| | | X X
U U U | |
| | |
(Elise) (Elise) (6) Uionion,py (P) U (item,p) (P) Uo(c, day, hotaior) (€)

cachef

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / \ <hotdog>
|
/ X \
U U / \
7N SN
(Monday)  (Friday) (patty)  (bun)  (onion)  Up(otdos item) (itEM) Uo(.,day, hotdeoz) (aY)
| | | | |
X X X X X |
| | | X X
@] U @] @] | |
| | | |
(Elise) (Elise) (6) 2)) Uigonion,py () Uitem, p) (P) Uoie,day, hotdoz) (€

cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / <hotdog>
|
/ X \
u u / \
7N PR
(Monday)  (Friday) (patty)  (bun)  (onion)  Up(otdos item) (itEM) Uo(.,day, hotdeoz) (aY)
| |
X X |
I | X X
l T | |
| |
(Elise) (Elise) Ulitem,p) (P) Uoc, day, noror) ()

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / \ <hotdog>
x
U / \ ¥ / \
7N SN
(Monday)  (Friday) (patty)  (bun)  (onion)  Up(notdos, item) (it€M) Uo(, day, hotcior) (day)
x x x  x x |
| | | | X X
U U U U U | |
| | | | |
(Elise) (Elise) (6) (2) (2) Ul(ftem,p)<p> UO(c,day,hot(/og)<c>

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) (hotdog)
|
X
, / \ \
PN
(Monday) (Friday) Uo(_,day,/,omg) (day)
| |
X X
| | X
7 l |
(Elise)  (Elise) ® @ @ U(item.p) (P) Uoe, day, noraor) ()

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / \ (hotdog)
x x
U / \ U 5 \
SN SN TN
(Monday)  (Friday) (patty)  (bun)  (onion) | {(bun) (onion) (sausage) UO(_ydayy,m[dOg)(day>
x x xox o x % x
| | | | | X
R I |
(Elise) (Elise) (6) (2) ) Uigoun,p) (P U(sausage.p) (P) Uo(c,day, hotdos) (€)

cache! cache! cache!

U/(omon,p) (p)

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / \ (hotdog)
x x
¥ / \ g U / \
SN SN TN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_ydayy,m[dOg)(day>
x x xox o oxox % x
| | | | | X
R I |
(Elise) (Elise) (6) (2) (2) Ui(ounp) (P Ui(sausage,p) (P Uo(c, day, hordo) (€)

cache! cache! cache!

U/(omon,p) (p)

® price depends on item, but not on dish.
Cache prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U U u \
SN PN TN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,,,om“g)(da}’>
| | | | | | | |
X X X X x X X X
\ \ \ -4 X
U U U u- U ‘
I I I I
(Elise) (Elise) (6) (2) (2) Ul(sausage,p)<P> UO(C,day,hot(/og)<c>
cache! cache! cache!
LJKOWDmp)(P)

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U U U \
SN TN PN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,,,om“g)(da}’>
| | | | | | | |
X X X X X X X X
\ \ \ -4 X
@] U @] u- @] ‘
[ [ [ [
(Elise) (Elise) (6) (2) (2) U(sausage.p) (P) Uo(c,day, hotdos) (€)

cache! cache! cache!

Ul(omun,p) (p)

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U U U \
SN TN PN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,,,om“g)(da}’>
| | | | | | | |
X X X X X X __X X
\ \ \ Y A X
@] U @] u- U~ ‘
[ [ [ [
(Elise) (Elise) (6) (2) (2) U(sausage.p) (P) Uo(c,day, hotdos) (€)

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U U U \
SN TN PN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,,,om“g)(da}’>
| | | | | | | |
X X X X X X __X X
\ \ \ Y A X
@] U @] u- U~ ‘
[ [ [ [
(Elise) (Elise) (6) (2) (2) U (sausage.p) (PY|Uo(c,day. hotdo) (€)

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

/ (hotdog)
|

U @]
7N SN \
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,,,om“g)(da}’>
| | | | | | |
X X X X X __x __X X
\ \ \ |4 x
@] U @] u- U~ @] ‘
I I I I I I
(Elise) (Elise) (6) (2) (2) 4) UO(C,day,hot(/og)<c>
cache! cache! cache!

® price depends on item, but not on dish
Cache prices for specific items!
m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U @] U
SN TN PN
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) UO(_,day,ho[dog)(day>
| |

| |
X X X X X _ - X - X X
\ \ \ IS R \ x
U ] U u- u - U ‘
| | | | | |
(Elise) ~ {Elise) (6) (2) @) ) Uote,day, notaos) (€)

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X
U @] U U
SN RS SN |
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) (Friday)
| | | | | | | |
X X X X X _-X - X X X
\ \ \ Y A \
@] U @] u- U~ @]
I I I I I I
(Elise) (Elise) (6) (2) (2) (4 UO(C,friday,hotdog)<C>

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / (hotdog)
| |
/ X \ / X \
U @] U U
SN RS SN |
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) (Friday)

| | | | | | | | |
X X X X X X __X X X

\ \ \ Y A \

@] U @] u- U~ @]

[ [ [ [ [ [

(Elise) ~ (Elise) ® @ @ @)

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

(burger) / \ (hotdog)
| |
X X
SN RS SN |
(Monday)  (Friday) (patty)  (bun)  (onion)  (bun) (onion) (sausage) (Friday)
| | | | | | | | |
X X X X X X __X X X
\ \ \ Y P \ \
@] U @] u- U~ @] U
\ \ \ \ \ \ 0N
(Elise) (Elise) (6) (2) (2) (4) |(Joe) (Steve))

cache! cache! cache!

® price depends on item, but not on dish.
Cache prices for specific items!

m Reuse cached prices for specific items!
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Example: Computing the Factorized Join Result with FDB

U0(7,,, dish),D(dish,) (dish)

X
/\
Uo(..day,disn) (daY) Up(dish, item) (item)
| |
X X

UO(customer,day,dish) <CUSt0mer> Ul(item,price) <Price)

m Relations are sorted following any topological order of the variable order

m The intersection of relations O and D on dish takes time
O(Nmin |Og(Nmax/Nmin)), where Nm = m(|7rd,-5h0|, |7rd,'5/7D|).

m The remaining operations are lookups in the relations, where we first fix
the dish value and then the day and item values.
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LeapFrog TrieJoin Algorithm

m Much acclaimed worst-case optimal join algorithm used by LogicBlox [V14]

m Computes a listing representation of the join result

= It does not exploit factorization
m ~ Glorified multi-way sort-merge join with an efficient list intersection

m Several generalizations, e.g., Tetris, Minesweeper, and PANDA
[NRR13,ANS17]

LeapFrog TrieJoin is a special case of FDB, where
m the input variable order A is a path
(i.e., no branching)

m for each variable A, key(A) consists of all ancestors of A in A.

(i.e., no caching)
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Example: Computing the Full Join Result

The listing representation of the result of our join:

O(customer, day, dish), D(dish, item), I(item, price)

can be computed by FDB using any total variable order.

Variable order FDB execution plan

day Uo(_ day, ) (day)
|
X
|

customer UO(customer,day,,) (customer)
|
— x

|

dish UO(customer,day,dish),D(d/'sh,,) (d’5h>
|
X
|

item Ubdish,item). i(item, ) {it€m)
|
X
|

price Ul (item, price) {Price)

67 /99



Example: Computing the Full Join Result

UO(.,day,.) (day)

X

U O(customer ,day ,.) < customer)

X

U O(customer ,day ,dish), D(dish, ) < dISh>

X

|
Ubcaish, i, 17, ¢
|
X
|
isp

U:( )(P)
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X
|
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Example: Computing the Full Join Result

‘ (Monday

>/U\<

Friday)

X

U O(customer, (Monday) ,-) <CUStOmer>

X

U O(customer , (Monday ) ,dish),D(dish, ) (d’5h>

t
X

UO(customer, (Friday) ,-) < CUStOmer>

X

UO(customer, (Friday) ,dish), D(dish,) (dish)

X

UD(dish,i),/(f,-)<i>

X

Ul(i,p)<P>
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Example: Computing the Full Join Result

/ \
(Monday)

|
X

[UO(customer, (Monday) ,-) (customer} ]

X

U O(customer , (Monday ) ,dish),D(dish, ) <d’5h>

(Friday)
|
X

UO(customer, (Friday) ,-) < CUStOmer>

X

U O(customer , ( Friday ) ,dish),D(dish,.) < d’5h>

X

UD(cush,i),/(f,-)<'.>

X

Ul(,',p) {p)
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
! |
X X
U
|
(Elise) Uo(customer. (Friday) ) {customer)
X
X
Uo((erisey , (Monday) ,aish), Daish, ) {dish) U o(eustomer, (Friday) dish) (e, {Tis)
X X
UD(dishJ)v'(iy-)“) UD(dish,i),I(f,_)<i>
X X
U/(i,,;)(P) U/(,’,p)<P>
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
! |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
X
[U0(<Eﬁse> ,(Monday) ,dish), D(dish, ) <d"5”>] U o(customer, (Friday dishy, D(aish, ) {ish)
X X
UD(dishJ)v'(iy-)“) UD(dish,i),I(f,_)<i>
X X
Uigip (P) Ui, (P)

68/99



Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
X
U O(customer , ( Friday ) ,dish),D(dish,.) <d’5h>
X
UD((burger) L), 1(i5-) <’> UD(dish,i),l(f,_) <’>
X X
U,(;},,)(P) Ul(i,p)<P>
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
7 |
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
X
([ Ustowser 6.0 | Ui 6,5
X X
U/(i,,;)(P) U/(,’,,,)(P)
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Example: Computing the Full Join Result

(Friday)

(Monday)
|
X X
U
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
7 |
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
t X
7 |
SN _
(patty) (bun) (onion) UD(d,-sh,,-)’,(,._)(O
] ] ]
X x X |
X

Ul(,',p) {p)

Uipattyy o) P | Uiganion) ,py (P2

Uituny . (P
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
7 |
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
| X
7 |
PR
(patty) (bun) (onion) UD(dish,i),/(f,_)<’>
| | |
X X X |
X
UI((Patty),p)(p> Ul((onfo,,;,p)<P> Ul(i,p)<P>

Uituny . (P
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
7 |
| .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
| X
7 |
SN
(bun)  {onion) Ubaish, i, 17, ()
| |
x  x |
X
Ul(\/onfon;,p) (p) Ul(iyp)<p>

Ui (sun) ) (P
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
7 |
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
| X
7 |
SN
(patty) (bun) (onion) UD(d,-sh,,-)’,(,._)(O
X
Ul(,',p)<P>
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Example: Computing the Full Join Result

(Friday)

(Monday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
u
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
X
| X
U
SN _
(patty) (bun) (onion) UD(d,-sh,,-)’,(,._)(O
| | |
X X X
| X
U U
|
(6) 1((onion) p) (P Ui, (P)

(2)
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Example: Computing the Full Join Result

(Friday)

(Monday)
| |
X X
|
U
|
(Elise) Uo(customer. (Friday) ) {customer)
|
X
| X
u
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
X
| X
U
SN _
(patty) (bun) (onion) UD(d,-sh,,-)’,(,._)(O
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X X
| | X
U U
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Example: Computing the Full Join Result
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X X
|
U
| |
(Elise) [ Uo(customer. (Friday) ) {customer) ]
|
x |
| X
7 |
I .
<burger> UO(customer, (Friday) ,dish),D(dish, ) <d’5h>
|
x |
| X
7 |
SN
(patty) (bun) (onion) UD(d,-sh,,-)’,(,._)(O

| | |

X X x

| | | X

U U U |

| | |

(6) (2) (2) Ul(i,p)<P>
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Example: Computing the Full Join Result

/U\

(Monday) (Friday)
! |
X X
I :
U U
| / |
(Elise) (Elise) (Joe) (Steve)
| + t t
X X X X
|
v | |
' Uogise) , (Fridayy ,dish) D(cish, ) (s Uosteve, (Friday) ,dish), D(cish, ) (ish)
(burger) .
! Uo(oe, (Fridayy ,dish), D(dish, ) ish)
X |
| X X X
U | | |
SN ) . .
(patty) (bun) (onion) UD(dish,i),/(i,_)<’> UD(d,-s;,,,-),,(,-_)(O UD(d,-s,,yi),,(,-’_)(l)
| | |
X X X | | |
| | | x X X
U U U | | |
| | |
(6) (2) (2) Ul(,',p)<P> Ul(,',p)<P> U,(,-ﬁp)(P>
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Example: Computing the Full Join Result

(Monday) (Friday)
| |
X X
| |
U (@]
, T
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
|
| [Uo( (Elise) , ( Friday) ,dish), D(dish, ) (dish) ] UO(Steve, (Friday) ,dish), D(dish,.) (dish)
(burger) )
| UO(Joe, (Friday) ,dish), D(dish,.) (dish)
X |
| X X X
7 | | |
SN ) _
(patty) (bun) (onion) UD(d,-sh,,-),,(,-,_)(O UD(dish,i),I(f,.)<’> UD(dish,i),I(f,.)<l>
| | |
X X X | | |
| | | X X X
] @] @] | | |
| | |
(6) (2) (2) Ui, (P) Ui, (P) Uii,p) (P
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Example: Computing the Full Join Result

(Monday) \ (Friday)
| |
X X
| |
U @]
I T
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
' |
U .
I Uo(steve, (Friday) ,dish), D(dish, ) lish)
(burger) )
| UO(Joe, (Friday) ,dish), D(dish,.) (dish)
X X I
| X x
Y | |
PR ) _
(patty) (bun) (onion) Ub(tburgery iy, i, (D Ubaish, iy, i, (1) Ubaish, iy, 17, ()
| | |
X X X | | |
| | | X X X
] @] @] | | |
| | |
(6) (2) (2) Ui (P) Ui, (P) Uiii,p (P
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Example: Computing the Full Join Result

(Monday) \ (Friday)
| |
X X
| |
U @]
, T
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
| | |
u U .
| | Uo(steve, (Friday) ,dishy, D(dish, ) (liSh)
(burger) (burger) )
| | UO(Joe, (Friday) ,dish), D(dish,.) (dish)
X X |
| X X
7 | |
PR _
(patty) (bun) (onion) UD(d,-s;,,,-),/(;,_)<’> UD(dish,i),I(i,.)(’)
| | |
X X X |
| | | X X
U U U | |
| | |
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68/99



Example: Computing the Full Join Result

(Monday) (Friday)
| |
X X
| |
U @]
, T
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
| | |
U] U .
| | Uo(steve, (Friday) ,dishy, D(dish, ) (liSh)
(burger) (burger) )
! | Uo(oe, (Fridayy ,dish), D(dish, ) ish)
X X I
| t X X
@] (@] | |
PR PN _ _
(patty) (bun) (onion) (patty) (bun) (onion)|  Up(dish,iy, i, (1) Ubaish, iy, 17, ()
| | | t t t
X X X X X x | |
| | | | X X
7 7 7 U (p) (U (p) | |
| ! ! 1(¢patty) p) P [ Ultonion) ,p) (P
6 2 @ \ Usgi.py (P Usipy (P

UI((bun) ) (P
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Example: Computing the Full Join Result

(Monday) \ (Friday)
| |
X X
| |
U @]
I T
(Elise) (Elise) (Joe) (Steve)
| | | |
X X X X
| | |
U] U .
I I Uo(steve, (Friday) ,dish), D(dish, ) lish)
(burger) (burger) )
| | UO(Joe, (Friday) ,dish), D(dish,.) (dish)
X X I
| | X X
@] (@] | |
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(patty) (bun) (onion) (patty) (bun) (onion)  Up(dish,iy, i, (1) Ubaish, iy, 17, ()
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7 7 7 U U (p) | |
| ! ! I(patty) ,p) P Ui conion) ,p) (P
© @ @ \ Uigi.n) () Uigi.p ()

UI((bun) ) (P
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Example: Computing the Full Join Result

(Monday) \ (Friday)
| |
X x
| |
U @]
, T
(Elise) (Elise) (Joe) (Steve)
| | | |
X x x x
| | |
u U .
| | Uo(steve, (Friday) ,dishy, D(dish, ) (liSh)
(burger) (burger) )
| | UO(Joe, (Friday) ,dish), D(dish,.) (dish)
X X I
| | X X
@] (@] | |
PR PN _ _
(patty) (bun) (onion) (patty) (bun) (onion)  Up(dish,iy, i, (1) Ubaish, iy, 17, ()
| | | | | |
X X x X X X | |
| | | x x
U U U U | |
| | | | Uitonion) ,p) (P
® @ @ 6 Ui, (P Uii.p (P

1({bun) ,p) (P
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Example: Computing the Full Join Result
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Example: Computing the Full Join Result

U

(Monday) \ (Friday)
| |
X x
| |
U @]
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X x x x
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u U .
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Example: Computing the Full Join Result
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Example: Computing the Full Join Result

/U\

(Monday) (Friday)
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X x
| |
U @]
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X x x x
| | |
u U .
I I Uo(steve, (Friday) ,dish), D(dish, ) lish)
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X X I
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Experiment: Factorized vs. Listing Computation

Size (x1 05 values, logscale)

Both FDB and PostgreSQL list the records in the results of the join queries.

|| Retailer (3B)

| LastFM (5.8M)

Join Factorization 169M 316K
Size Listing 3.6B 591M
(values)  Compression 21.4x 1870.7 %
Join FDB 30 10
Time PostgreSQL 217 61
(sec) Speedup 7x 6.1x
eacescpnaon e e — 10° 0% (e ey
Size (List) = X - .

- Join time (List) = X -
Size (Fact) —+—

Scale Factor (s), Housing (8M for s=16)

Join time (seconds, logscale)
Compression/speedup (logscale)

Compression ratio. —+—
- Join speedup —>— - -

Scale Factor (s), Housing (8M for s=16)
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Outline of Part 1: Joins

Further Work and References
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Relevant Work not Covered in the Course

= Widths, results sizes, and join computation under functional dependencies
[GLVV12,ANS16,GT17,ANS17]

m Adaptive join processing with lower complexity [AYZ97,ANS17]

> We exemplify this next with the 4-cycle join [AYZ97]

m Covers: Relational counterpart of factorized representation [KO18]
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Recall the (4-cycle) Join

Q(A1, Az, A3, Ag) = R(A1, Az), S(Az, A3), T(As, Ag), W(As, Ar).

The linear program for its fractional edge cover number:

minimize xg + xs + X1 + xw

subject to
A1 XR + XxXw >1
As XR —+ >1
Az : + X7 >1
A4 N XT + XwW Z 1
xg >0 >0 xr>0 xw=>0
Solutions: xg = x7 =1 or xs = xw = 1. Then, p* = 2. Also, fhtw = 2.

Lower bound Q(N?) obtained for

R(A1, A2) = T(As,As) = [N] x {1} and S(Az, A3) = W(A4, A1) = {1} x [N]
m The variables A; and As get values [N]
m The variable A; and A; get value {1}
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Can We Do The Boolean 4-Cycle Join Faster?

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ar).

We can use one of the two decompositions:
B By
Ti: {A1, A, Az} — {A1, A3, As}
To: {As, A1, Ao} — {Ar, Az, As}

B3 By

Lower-bound: A; and Az get values [N] and A, and A4 get value {1}.
m Use T1: R(A17A2),S(A2,A3) cover Bl, T(A3,A4)7 W(A47A1) cover BQ

N-N=N2 N-N=N2
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Can We Do The Boolean 4-Cycle Join Faster?

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ay).

We can use one of the two decompositions:
B By
Ti: {A1, A, Az} — {A1, A3, As}
To: {As, A1, Ao} — {Ar, Az, As}

B3 By

Lower-bound: A; and Az get values [N] and A, and A4 get value {1}.
m Use T1: R(Al,A2),S(A2,A3) cover Bl, T(A3,A4)7 W(A47A1) cover Bz

N-N=N2 N-N=N2
m Use To: R(A1, A2), W(As, A1) cover Bs, S(Az, As), T(As, As) cover B,

N N

Idea: Why not use different decompositions for different classes of input

databases or even for different partitions of a relation?
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Light and Heavy Values
Fix e € [0,1]. A value a of variable A in relation R is:

HEAVY if |0a_,(R)| > N° LIGHT if |oa_.(R)| < N°
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Light and Heavy Values
Fix e € [0,1]. A value a of variable A in relation R is:

HEAVY if [oa_.(R)| > N° LIGHT if [oa_a(R)| < N°
Partition R(A1, A2) and T(As, As) into heavy and light parts:

R ={(a1,a) € R| a1 is heavy} U {(a1,a2) € R | a1 is light}

Rp R

T ={(as,as) € T | as is heavy} U {(as,as) € T | a3 is light}

Th T
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Evaluation of the 4-Cycle Boolean Query in O(N3/2)

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ar)

Recall the two decompositions:
B B, B3 By

T1 : {Al7 Az7 A3} — {Al, A3, A4} T2 : {Aa7 A17 Az} — {/427 A?,7 A4}

We rewrite Q as Q() = Q1() U Q2() U Q3(), where

Q1() = Rn(A1, A2), S(A2, A3), T(As, As), W(As, A1)
Q2() = R|(A1,A2),5(A2,A3),Th(A3,A4), W(A47A1)

@3() = Ri(A1, A2), S(Az, As), Ti(Asz, As), W (A4, A1)
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Evaluation of the 4-Cycle Boolean Query in O(N3/2)

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ar)

Recall the two decompositions:
B B, B3 By

T1 : {Al7 Az7 A3} — {Al, A3, A4} T2 : {A47 A17 Az} — {/427 A?,7 A4}

We evaluate

Q1() = Rn(A1, A2), S(Az, As), T(As, As), W(As, A1)

using T1: TA; Rh(Al), S(Az,A3) covers Bl, TA; Rh(Al), T(A3,A4) covers Bz

Nl—e.N=N2—¢ N1—€.N=N2—¢

For e = 1/2, the time to compute Q; is N*/2.
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Evaluation of the 4-Cycle Boolean Query in O(N3/2)

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ar)

Recall the two decompositions:
B B, B3 By

T1 : {Al7 Az7 A3} — {Al, A3, A4} T2 : {A47 A17 Az} — {/427 A?,7 A4}

We evaluate

Q2() = R'(A17A2)7S(A27A3)7Th(A37A4), W(A4,A1)

using T1: T A3 Th(A3), R/(Al,Az) covers Bl, T A3 Th(A3), W(A17A4) covers BQ

Nl—€e.N=N2—¢€ Nl—€e.N=N2—¢€

For e = 1/2, the time to compute Q, is N*/2.
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Evaluation of the 4-Cycle Boolean Query in O(N3/2)

Q() = R(A1, A2), S(Az, As), T(As, As), W(As, Ar)

Recall the two decompositions:
B B, B3 By

T1 : {Al7 Az7 A3} — {Al, A3, A4} T2 : {/447 A17 Az} — {Az7 A?,7 A4}

We evaluate
Qs() = Ri(A1, A2), S(Az, A3), Ti(As, As), W(As, Ar)

using To: W(As, A1), Ri(A1, A2) covers Bi, S(Az, A3), Ti(As, As) covers B,

N-Ne=N1+e N-Ne=N1+e

For e = 1/2, the time to compute Q3 is N*/2.
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Covers: Relational Counterparts of Factorizations

m Factorized representations are not relational :(

> This makes it difficult to integrate them into relational data systems

m Covers of Query Results [KO17]

> Relations that are lossless representations of query results, yet are as
succinct as factorized representations

> For a join query Q and any database of size N, a cover has size O(thtW(Q))
and can be computed in time O(NH™(Q))

= How to get a cover?
» Construct a hypertree decomposition of the query
> Project query result onto the bags of the hypertree decomposition
> Construct on these projections the hypergraph of the query result

> Take a minimal edge cover of this hypergraph
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Recall the Itemized Customer Orders Example

Orders (O for short)

Dish (D for short)

Items (I for short)

customer day dish dish item item price
Elise Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday  hotdog burger bun bun 2
Joe Friday  hotdog hotdog bun sausage 4
hotdog onion
hotdog sausage

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise = Monday  burger patty 6
Elise =~ Monday burger  onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

Elise Monday burger

Elise Friday burger

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise  Monday  burger patty 6
Elise =~ Monday  burger  onion 2
Elise =~ Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Res

ult

burger patty

Elise Monday burger

burger  onion

Elise Friday burger

burger

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Res

ult

burger patty

Elise Monday burger

burger  onion

Elise Friday burger

burger

customer,day,dish

patty

onion

6

2

O(customer, day, dish), D(dish, item), I(item, price)

dish

customer day item price
Elise Monday burger patty 6
Elise =~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Res

ult

burger patty

patty 6>

@ise Monday burger

burger  onion

Elise Friday burger

burger

customer,day,dish

onion 2

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

burger patty

patty 6>

@ise Monday burger

burger  onion

onion 2

N

Elise Friday burger

burger

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise ~ Monday  burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

@ise Monday burger

Elise Friday burger

burger patty patty
burger  onion onion
burger  bun bun

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

burger patty

@ise Monday burger Y

burger  onion

{'Elise Friday burger

burger  bun

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

burger

@ise Monday burger /-

\:'Ense Friday burger /

customer,day,dish

patty
burger  onion onion 2>
burger

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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The Hypergraph of the Query Result

burger

patty
burger  onion onion 2>
burger  bun

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday  burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2

89/99



A Minimal Edge Cover of the Hypergraph

burger patty patty 6>
@ise Monday burger
burger  onion onion
//// _
Elise Friday burger
\ —
,,,\,\\\\\\ jurger bun Bun 2>

O(customer, day, dish),

D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise =~ Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday  burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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A Cover of (a part of) the Query Result

O(customer, day, dish), D(dish, item), I(item, price)

dish item

customer day price
Elise Monday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2

customer,day,dish

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price
Elise Monday burger patty 6
Elise Monday burger  onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger  onion 2
Elise Friday burger bun 2
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Outline of Part 1: Joins

Quiz
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QUIZ on Joins (1/4)

For each of the following queries, please show the following:

1. A hypertree decomposition and an equivalent variable order

2. The fractional edge cover number and the fractional hypertree width

Path Query of length n:

Po(X1, ..., Xat1) = Ri(X1, X2), Ra(X2, X3), Rs(X3, Xa), . . ., Rn(Xa, Xns1).
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QUIZ on Joins (2/4)

For each of the following queries, please show the following:

1. A hypertree decomposition and an equivalent variable order

2. The fractional edge cover number and the fractional hypertree width

Loop Query of length n:

Lo(X1, ..., Xns1) =R1(X1, X2), Ra(Xa, X3), Rs(Xs, Xa), - - ., Ra(Xn, X1).
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QUIZ on Joins (3/4)

For each of the following queries, please show the following:

1. A hypertree decomposition and an equivalent variable order

2. The fractional edge cover number and the fractional hypertree width

Bowtie Query:

Q(A,B,C,D,E) = Ri(A, C), R:(A, B), Rs(B, C), Ra(C, E), Rs(E, D), Rs(C, D).
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QUIZ on Joins (4/4)

For each of the following queries, please show the following:

1. A hypertree decomposition and an equivalent variable order

2. The fractional edge cover number and the fractional hypertree width

Loomis-Whitney Queries of length n: A LW, query has n variables Xi,..., X,
and n relation symbols such that for every i € [n] the relation symbol R; has
variables {Xi,...,X,} — {Xi}:

LW (X1, .. Xa) = Ri(Xay oo, Xn), o Ri(X, o Xim1, Xigt, e s Xa), -
Ro(X1, ..., Xn_1)

LW, captures the Loomis—Whitney inequality: Estimate the "size” of a
d-dimensional set by the sizes of its (d — 1)-dimensional projections.

LWj is the triangle query.
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