
The Relational Data Borg is Learning: Part Deux
fdbresearch.github.io relational.ai

Dan Olteanu
University of Zurich

VLDB 2020 Keynote
Virtual Tokyo, Sept 1, 2020

fdbresearch.github.io
relational.ai

Where We Are

Covered so far:

• Relational data is ubiquitous

• Structure-agnostic learning is the state of the art

• Structure-aware learning can be much faster

• Idea 1: Turn learning into a DB workload challenge

To come: Exploit structure of the data and problem

• Idea 2: Lower the asymptotics

• Idea 3: Lower the constant factors

Idea 2: Exploit Problem Structure to Lower Complexity

Structure-aware Tools of a Database Researcher

Algebraic structure: (semi)rings (R,+, ∗, 0, 1)

• Distributivity law→ Factorisation

Factorised Databases [VLDB’12+’13,TODS’15,SIGREC’16]

Factorised Machine Learning [SIGMOD’16+’19,DEEM’18,PODS’18+’19, TODS’20]

• Additive inverse→ Uniform treatment of updates

Factorised Incremental Maintenance [SIGMOD’18+’20]

• Sum-Product abstraction→ Same processing for distinct tasks

DB queries, Covariance matrix, PGM inference, Matrix chain multiplication

[SIGMOD’18+’19]

Structure-aware Tools of a Database Researcher

Combinatorial structure: query width and data degree measures

• Width measure w for FEQ→ Low complexity Õ(Nw)

factorisation width ≥ fractional hypertree width ≥ sharp-submodular width
worst-case optimal size and time for factorised joins

[ICDT’12+’18,TODS’15,PODS’19,TODS’20]

• Degree→ Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance [ICDT’19a, PODS’20]

evaluation of queries with negated relations of bounded degree [ICDT’19b]

• Functional dependencies→ Learn simpler, equivalent models

reparameterisation of polynomial regression models and factorisation machines

[PODS’18,TODS’20]

Factorised Query Evaluation

⇓

Time/Size Improvement

A Burgers & Hotdogs Use Case

Orders (O for short)

customer day dish

Elise Monday burger
Elise Friday burger

Steve Friday hotdog
Joe Friday hotdog

Dish (D for short)

dish item

burger patty
burger onion
burger bun
hotdog bun
hotdog onion
hotdog sausage

Items (I for short)

item price

patty 6
onion 2

bun 2
sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

A Burgers & Hotdogs Use Case

Orders (O for short)

customer day dish

Elise Monday burger
Elise Friday burger

Steve Friday hotdog
Joe Friday hotdog

Dish (D for short)

dish item

burger patty
burger onion
burger bun
hotdog bun
hotdog onion
hotdog sausage

Items (I for short)

item price

patty 6
onion 2

bun 2
sausage 4

Consider the natural join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

Burgers & Hotdogs in Relational Algebra

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2
Elise Friday burger bun 2
.

An algebraic encoding uses product (×), union (∪), and values:

Elise × Monday × burger × patty × 6 ∪
Elise × Monday × burger × onion × 2 ∪
Elise × Monday × burger × bun × 2 ∪
Elise × Friday × burger × patty × 6 ∪
Elise × Friday × burger × onion × 2 ∪
Elise × Friday × burger × bun × 2 ∪ . . .

Factorised Join

∪

burger hotdog

× ×

∪

bun onion sausage

× × ×

∪ ∪ ∪

2 2 4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish

day item

customer price

Variable order Instantiation of the variable order over the input database

There are several algebraically equivalent factorised joins defined by distributivity
of product over union and their commutativity.

... Now with Further Compression

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

dish∅

day
{dish}

item
{dish}

customer

{dish,
day}

price
{item}

Observation:

• price is under item, which is under dish, but only depends on item,

• .. so the same price appears under an item regardless of the dish.

Idea: Cache price for a specific item and avoid repetition!

Factorised Aggregate Computation

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Factorised Aggregate Computation

+

1 1

∗ ∗

+

11 1

∗∗ ∗

+

1

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

1 1 1

+

1

∗

+

1

1

∗

+

1

12

66

2 3

1 1 1

1 1

3 2

1 2

COUNT(*) computed in one pass over the factorisation:

• values 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Factorising the Computation of Aggregates (2/2)

∪

burger hotdog

× ×

∪

sausagebun onion

×× ×

∪

4

∪

Friday

×

∪

Joe Steve

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

SUM(price) GROUP BY dish computed in one pass over the factorisation:

• All values except for dish & price 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Factorising the Computation of Aggregates (2/2)

+

{burger 7→ 1} {hotdog 7→ 1}

∗ ∗

+

11 1

∗∗ ∗

+

4

+

1

∗

+

1 1

+

1 1 1

∗ ∗ ∗

+ + +

6 2 2

+

1

∗

+

1

1

∗

+

1

{burger 7→ 20, hotdog 7→ 16}

1620

2 10

1 1 6

2 2

8
2

4 2

SUM(price) GROUP BY dish computed in one pass over the factorisation:

• All values except for dish & price 7→ 1,

• ∪ 7→ +, × 7→ ∗.

Sum-Product Ring Abstraction

⇓

Sharing Aggregate Computation

Shared Computation of Several Aggregates (1/2)

burger

×

∪

patty bun onion

× × ×

∪ ∪ ∪

6 2 2

∪

Friday

×

∪

Elise

Monday

×

∪

Elise

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY dish:

• Elements = triples, one per aggregate

• Sum (+) and product (*) now defined over triples
They enable shared computation across the aggregates

Shared Computation of Several Aggregates (2/2)

(1, 0, {burger 7→ 1})

∗

+

(1, 0, 0) (1, 0, 0) (1, 0, 0)

∗ ∗ ∗

+ + +

(1, 6, 0) (1, 2, 0) (1, 2, 0)

+

(1, 0, 0)

∗

+

(1, 0, 0)

(1, 0, 0)

∗

+

(1, 0, 0)

(2, 0, 0) (3, 10, 0)
(2 · 3, 2 · 10, 0)

(6, 20, {burger 7→ 20})

(1, 0, 0)(1, 0, 0) (1, 6, 0) (1, 2, 0) (1, 2, 0)

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY dish:

• Elements = triples, one per aggregate

• Sum (+) and product (*) now defined over triples
They enable shared computation across the aggregates

Ring Generalisation for the Entire Covariance Matrix

Ring (R,+, ∗, 0, 1) over triples of aggregates (c, s,Q) ∈ R:

(), ,

SUM(1) SUM(xi) SUM(xi*xj)

(c1, s1,Q1) + (c2, s2,Q2) = (c1 + c2, s1 + s2,Q1 + Q2)

(c1, s1,Q1) ∗ (c2, s2,Q2) = (c1 · c2, c2 · s1 + c1 · s2,

c2 · Q1 + c1 · Q2 + s1sT
2 + s2sT

1)

0 = (0, 0n×1, 0n×n)

1 = (1, 0n×1, 0n×n)

• SUM(1) reused for all SUM(xi) and SUM(xi ∗ xj)

• SUM(xi) reused for all SUM(xi ∗ xj)

Idea 3: Lower the Constant Factors

1

10

100

1000

10000

12x

3x

2x

Engineering Tools of a Database Researcher

1. Specialisation for workload and data

Generate code specific to the query batch and dataset

Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree
Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM’18,SIGMOD’19, CGO’20]

IFAQ: Iterative Functional Aggregate Queries

One DSL to Express both DB and ML Workloads! [CGO’20]

• Building blocks: Functional Aggregate Queries [PODS’16]

• Formalism that expresses computation in databases, linear algebra, AI, logic

• Relations are dictionaries

• Sum-product computation over dictionaries

• Conditionals using Kronecker delta

• Iteration constructs for

• Stateful computation over collection elements

• Constructing nested dictionaries

Transformation Steps for IFAQ Expressions

IFAQ
Expression

Loop
Scheduling

Factorisation
Static

Memoisation
Code

Motion

High-Level Optimisations

Loop
Unrolling

Static Field
Access

Schema Specialisation

Aggregate
Extraction

Aggregate
Pushdown

Aggregate
Fusion

Aggregate Optimisations

Trie
Conversion

Code
Motion

Factorisation
Data

Layout
C++
Code

Trie Conversion

Engineering Tools of a Database Researcher

Relative Speedup of Code Optimisations

1x

2x

4x

8x

16x

32x

64x

128x

Retailer Favorita Yelp TPC-DS

R
el

at
iv

e
S

pe
ed

up
(lo

gs
ca

le
2)

Added optimisations for covariance matrix computation:

specialisation→ + sharing→ + parallelisation

AWS d2.xlarge (4 vCPUs, 32GB)

Conclusion

Three-step Recipe for Learning over Relational Data

1. Turn the learning problem into a database problem

2. Exploit the problem structure to lower the complexity

3. Specialise and optimise the code to lower the constant factors

Q.E.D.

Relational Data Borg’s Call to Arms

We need more sustained work on theory and systems for

Structure-aware Approaches to Data Analytics

