The Relational Data Borg is Learning: Part Deux

fdbresearch.github.io

relational.ai

Dan Olteanu University of Zurich

VLDB 2020 Keynote Virtual Tokyo, Sept 1, 2020

Where We Are

Covered so far:

- · Relational data is ubiquitous
- · Structure-agnostic learning is the state of the art
- · Structure-aware learning can be much faster
- · Idea 1: Turn learning into a DB workload challenge

To come: Exploit structure of the data and problem

- · Idea 2: Lower the asymptotics
- Idea 3: Lower the constant factors

Idea 2: Exploit Problem Structure to Lower Complexity

Algebraic structure: (semi)rings ($\mathcal{R}, +, *, \mathbf{0}, \mathbf{1}$)

Distributivity law → Factorisation

Factorised Databases [VLDB'12+'13,TODS'15,SIGREC'16]

Factorised Machine Learning [SIGMOD'16+'19, DEEM'18, PODS'18+'19, TODS'20]

Factorised Incremental Maintenance

[SIGMOD'18+'20]

Sum-Product abstraction → Same processing for distinct tasks
 DB queries, Covariance matrix, PGM inference, Matrix chain multiplication
 [SIGMOD'18+'19]

Combinatorial structure: query width and data degree measures

• Width measure w for FEQ \rightarrow Low complexity $\tilde{O}(N^w)$

factorisation width \geq fractional hypertree width \geq sharp-submodular width worst-case optimal size and time for factorised joins

[ICDT'12+'18,TODS'15,PODS'19,TODS'20]

- Degree \rightarrow Adaptive processing depending on high/low degrees

worst-case optimal incremental maintenance [ICDT'19a, PODS'20] evaluation of queries with negated relations of bounded degree [ICDT'19b]

 Functional dependencies → Learn simpler, equivalent models reparameterisation of polynomial regression models and factorisation machines [PODS'18,TODS'20]

Factorised Query Evaluation

 \downarrow

Time/Size Improvement

A Burgers & Hotdogs Use Case

Orders (O for short)			Dish (D	for short)	Items (I for short)		
customer	day	dish	dish	item	item	price	
Elise	Monday	burger	burger	patty	patty	6	
Elise	Friday	burger	burger	onion	onion	2	
Steve	Friday	hotdog	burger	bun	bun	2	
Joe	Friday	hotdog	hotdog	bun	sausage	4	
			hotdog	onion			
			hotdog	sausage			

A Burgers & Hotdogs Use Case

Orders (O for short)			Dish (D	for short)	Items (I for short)		
customer	day	dish	dish	item	item	price	
Elise	Monday	burger	burger	patty	patty	6	
Elise	Friday	burger	burger	onion	onion	2	
Steve	Friday	hotdog	burger	bun	bun	2	
Joe	Friday	hotdog	hotdog	bun	sausage	4	
			hotdog	onion			
			hotdog	sausage			

Consider the natural join of the above relations:

- (-),,)	,, (, ,, (· · · · · · · · · · · · · · · · · · ·
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2

O(customer, day, dish), D(dish, item), I(item, price)

Burgers & Hotdogs in Relational Algebra

O(customer, day, dish), D(dish, item), I(item, price)							
customer	day	dish	item	price			
Elise	Monday	burger	patty	6			
Elise	Monday	burger	onion	2			
Elise	Monday	burger	bun	2			
Elise	Friday	burger	patty	6			
Elise	Friday	burger	onion	2			
Elise	Friday	burger	bun	2			

An algebraic encoding uses product (\times), union (\cup), and values:

Elise	×	Monday	\times	burger	\times	patty	×	6	U
Elise	\times	Monday	×	burger	×	onion	×	2	\cup
Elise	\times	Monday	×	burger	×	bun	×	2	\cup
Elise	\times	Friday	×	burger	×	patty	×	6	U
Elise	\times	Friday	×	burger	×	onion	×	2	\cup
Elise	×	Friday	×	burger	×	bun	×	2	$\cup \dots$

Instantiation of the variable order over the input database

There are several algebraically equivalent factorised joins defined by distributivity of product over union and their commutativity.

... Now with Further Compression

Observation:

- price is under item, which is under dish, but only depends on item,
- .. so the same price appears under an item *regardless* of the dish.

Idea: Cache price for a specific item and avoid repetition!

Factorised Aggregate Computation

COUNT(*) computed in one pass over the factorisation:

- values \mapsto 1,
- $\bullet \ \cup \mapsto +, \times \mapsto \ast.$

Factorised Aggregate Computation

COUNT(*) computed in one pass over the factorisation:

- values \mapsto 1,
- $\bullet \ \cup \mapsto +, \times \mapsto \ast.$

Factorising the Computation of Aggregates (2/2)

SUM(price) GROUP BY dish computed in one pass over the factorisation:

- All values except for dish & price \mapsto 1,
- $\bullet \ \cup \mapsto +, \times \mapsto \ast.$

SUM(price) GROUP BY dish computed in one pass over the factorisation:

- All values except for dish & price \mapsto 1,
- $\bullet ~ \cup \mapsto +, \times \mapsto \ast.$

Sum-Product Ring Abstraction

 \Downarrow

Sharing Aggregate Computation

Shared Computation of Several Aggregates (1/2)

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY dish:

- Elements = triples, one per aggregate
- Sum (+) and product (*) now defined over triples They enable shared computation across the aggregates

Ring for computing SUM(1), SUM(price), SUM(price) GROUP BY dish:

- · Elements = triples, one per aggregate
- Sum (+) and product (*) now defined over triples They enable shared computation across the aggregates

Ring $(\mathcal{R}, +, *, \mathbf{0}, \mathbf{1})$ over triples of aggregates $(c, s, \mathbf{Q}) \in \mathcal{R}$:

$$(c_{1}, \mathbf{s}_{1}, \mathbf{Q}_{1}) + (c_{2}, \mathbf{s}_{2}, \mathbf{Q}_{2}) = (c_{1} + c_{2}, \mathbf{s}_{1} + \mathbf{s}_{2}, \mathbf{Q}_{1} + \mathbf{Q}_{2})$$

$$(c_{1}, \mathbf{s}_{1}, \mathbf{Q}_{1}) * (c_{2}, \mathbf{s}_{2}, \mathbf{Q}_{2}) = (c_{1} \cdot c_{2}, c_{2} \cdot \mathbf{s}_{1} + c_{1} \cdot \mathbf{s}_{2}, c_{2} \cdot \mathbf{Q}_{1} + c_{1} \cdot \mathbf{Q}_{2} + \mathbf{s}_{1}\mathbf{s}_{2}^{T} + \mathbf{s}_{2}\mathbf{s}_{1}^{T})$$

$$\mathbf{0} = (0, \mathbf{0}_{n \times 1}, \mathbf{0}_{n \times n})$$

$$\mathbf{1} = (1, \mathbf{0}_{n \times 1}, \mathbf{0}_{n \times n})$$

- SUM(1) reused for all SUM(*x_i*) and SUM(*x_i* * *x_j*)
- SUM(x_i) reused for all SUM(x_i * x_j)

Idea 3: Lower the Constant Factors

1. Specialisation for workload and data

Generate code specific to the query batch and dataset Improve cache locality for hot data path

2. Sharing low-level data access

Aggregates decomposed into views over join tree Share data access across views with different output schemas

3. Parallelisation: multi-core (SIMD & distribution to come)

Task and domain parallelism

[DEEM'18,SIGMOD'19, CGO'20]

One DSL to Express both DB and ML Workloads! [CGO'20]

Building blocks: Functional Aggregate Queries

- [PODS'16]
- · Formalism that expresses computation in databases, linear algebra, AI, logic
- · Relations are dictionaries
- · Sum-product computation over dictionaries
- · Conditionals using Kronecker delta
- · Iteration constructs for
 - · Stateful computation over collection elements
 - · Constructing nested dictionaries

Engineering Tools of a Database Researcher

Relative Speedup of Code Optimisations

Added optimisations for covariance matrix computation:

specialisation \rightarrow + sharing \rightarrow + parallelisation

AWS d2.xlarge (4 vCPUs, 32GB)

Conclusion

- 1. Turn the learning problem into a database problem
- 2. Exploit the problem structure to lower the complexity
- 3. Specialise and optimise the code to lower the constant factors

Q.E.D.

We need more sustained work on theory and systems for

Structure-aware Approaches to Data Analytics

