
Conjunctive Queries with Free Access
Patterns under Updates

Ahmet Kara, Milos Nikolic, Dan Olteanu, Haozhe Zhang

29th March 2023

ICDT 2023, Ioannina, Greece

2/30

Scenario

Figure: Flight Booking Interface

3/30

Scenario

The flight booking company has a database with the two relations:

I Flight: (FlightNo, DEPAirport, ARRAirport, Date, Price)

I Airport: (Airport, Name, City)

List the flights in the database with the airport information:

FlightSearch(FlightNo, DEPCity, ARRCity, Date) :-

Flight(FlightNo, DEPAirport, ARRAirport, Date, Price),

DEPAirport(DEPAirport, Name, DEPCity),

ARRAirport(ARRAirport, Name, ARRCity).

4/30

Scenario

The flight booking company has a database with the two relations:

I Flight: (FlightNo, DEPAirport, ARRAirport, Date, Price)

I Airport: (Airport, Name, City)

List the flights from London to Zurich on 1st January 2023:

FlightSearch(FlightNo, "London", "Zurich", "2023-01-01") :-

Flight(FlightNo, DEPAirport, ARRAirport, "2023-01-01", Price),

DEPAirport(DEPAirport, Name, "London"),

ARRAirport(ARRAirport, Name, "Zurich").

5/30

Challenges

Query with parameters %DEPCity, %ARRCity and %Date:

FlightSearch(FlightNo, "%DEPCity", "%ARRCity", "%Date") :-

Flight(FlightNo, DEPAirport, ARRAirport, "%Date", Price),

DEPAirport(DEPAirport, Name, "%DEPCity"),

ARRAirport(ARRAirport, Name, "%ARRCity").

I This query is asked frequently by many users with different dates and
departure and arrival cities.

I The database is subject to frequent updates, e.g., new flights are added,
existing flights are cancelled, etc.

5/30

Challenges

Query with parameters %DEPCity, %ARRCity and %Date:

FlightSearch(FlightNo, "%DEPCity", "%ARRCity", "%Date") :-

Flight(FlightNo, DEPAirport, ARRAirport, "%Date", Price),

DEPAirport(DEPAirport, Name, "%DEPCity"),

ARRAirport(ARRAirport, Name, "%ARRCity").

I This query is asked frequently by many users with different dates and
departure and arrival cities.

I The database is subject to frequent updates, e.g., new flights are added,
existing flights are cancelled, etc.

5/30

Challenges

Query with parameters %DEPCity, %ARRCity and %Date:

FlightSearch(FlightNo, "%DEPCity", "%ARRCity", "%Date") :-

Flight(FlightNo, DEPAirport, ARRAirport, "%Date", Price),

DEPAirport(DEPAirport, Name, "%DEPCity"),

ARRAirport(ARRAirport, Name, "%ARRCity").

I This query is asked frequently by many users with different dates and
departure and arrival cities.

I The database is subject to frequent updates, e.g., new flights are added,
existing flights are cancelled, etc.

6/30

Conjunctive Queries with Free Access Patterns

We formalize such data access by Conjunctive Queries with Free Access
Patterns (CQAPs)

FlightSearch(FlightNo | DEPCity, ARRCity, Date) =

Flight(FlightNo, DEPAirport, ARRAirport, Date, Price),

DEPAirport(DEPAirport, Name, DEPCity),

ARRAirport(ARRAirport, Name, ARRCity)

I Free variables are partitioned into input and output variables

I Input: DEPCity, ARRCity, Date

I Output: FlightNo

I Access request: Given a tuple over the input variables, the query yields
the tuples over the output variables such that the body of the query is
satisfied

I Also called parameterized queries or prepared statements in DBMS

6/30

Conjunctive Queries with Free Access Patterns

We formalize such data access by Conjunctive Queries with Free Access
Patterns (CQAPs)

FlightSearch(FlightNo | DEPCity, ARRCity, Date) =

Flight(FlightNo, DEPAirport, ARRAirport, Date, Price),

DEPAirport(DEPAirport, Name, DEPCity),

ARRAirport(ARRAirport, Name, ARRCity)

I Free variables are partitioned into input and output variables

I Input: DEPCity, ARRCity, Date

I Output: FlightNo

I Access request: Given a tuple over the input variables, the query yields
the tuples over the output variables such that the body of the query is
satisfied

I Also called parameterized queries or prepared statements in DBMS

6/30

Conjunctive Queries with Free Access Patterns

We formalize such data access by Conjunctive Queries with Free Access
Patterns (CQAPs)

FlightSearch(FlightNo | DEPCity, ARRCity, Date) =

Flight(FlightNo, DEPAirport, ARRAirport, Date, Price),

DEPAirport(DEPAirport, Name, DEPCity),

ARRAirport(ARRAirport, Name, ARRCity)

I Free variables are partitioned into input and output variables

I Input: DEPCity, ARRCity, Date

I Output: FlightNo

I Access request: Given a tuple over the input variables, the query yields
the tuples over the output variables such that the body of the query is
satisfied

I Also called parameterized queries or prepared statements in DBMS

6/30

Conjunctive Queries with Free Access Patterns

We formalize such data access by Conjunctive Queries with Free Access
Patterns (CQAPs)

FlightSearch(FlightNo | DEPCity, ARRCity, Date) =

Flight(FlightNo, DEPAirport, ARRAirport, Date, Price),

DEPAirport(DEPAirport, Name, DEPCity),

ARRAirport(ARRAirport, Name, ARRCity)

I Free variables are partitioned into input and output variables

I Input: DEPCity, ARRCity, Date

I Output: FlightNo

I Access request: Given a tuple over the input variables, the query yields
the tuples over the output variables such that the body of the query is
satisfied

I Also called parameterized queries or prepared statements in DBMS

7/30

Problem Setting

We consider the problem of fully dynamic evaluation for CQAPs:

I Maintaining the database under tuple updates (inserts or deletes)

I Answering access requests

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time

enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
enumeration

delay

tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2

enumeration
delay

. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
enumeration

delay

EOF
enumeration

delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update

maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

8/30

Dynamic Query Evaluation Framework

Given a CQAP Q(O | I), compute a data structure that supports answering the
access requests and maintains it under updates.

query data
base data structure

preprocess

preprocessing
time enumerate

tuple 1
tuple 2
. . .

tuple n
EOF

enumeration
delay

O-tuples

access request

I-tuple

update
maintain

m
ai

nt
ai

n

update time

up
da

te
ti

m
e

9/30

Mainstream Approaches

Eager approach:

I Preprocessing: Compute the full result and create an index for the
access pattern

I Enumeration: Lookup the index and return the result

I Update: Maintain the full result and the index under each update

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)

I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output
δR1

Update to R1 delta query

δQ
Evaluate the delta query

Preprocessing: Compute the full result of the query and create an index for
the access pattern

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)
I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output
δR1

Update to R1 delta query

δQ
Evaluate the delta query

Preprocessing: Compute the full result of the query and create an index for
the access pattern

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)
I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output
δR1

Update to R1 delta query

δQ
Evaluate the delta query

Enumeration: Lookup the index and output the result tuple by tuple

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)
I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output

δR1

Update to R1 delta query

δQ
Evaluate the delta query

Enumeration: Lookup the index and output the result tuple by tuple

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)

I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output

δR1

Update to R1

delta query

δQ
Evaluate the delta query

Update: Maintain the full result and the index under each update

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)

I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output

δR1

Update to R1 delta query

δQ
Evaluate the delta query

Update: Maintain the full result and the index under each update

10/30

Mainstream Approaches: Eager Approach

R1 R2

. . .

Rn Q(I ∪ O)

I O

i
o...
o

...
...

i
o...
o

given an I-tuple
such as i

output

δR1

Update to R1 delta query

δQ
Evaluate the delta query

Update: Maintain the full result and the index under each update

11/30

Mainstream Approaches

Lazy approach:

I No preprocessing

I Enumeration: Upon each access request, set the input variables to
constants and evaluate the residual query

I Update: Maintain only the base relations

12/30

Mainstream Approaches: Lazy Approach

R1 R2

. . .

Rn

δR1

Update to R1

i

i′

residual query

Preprocessing: No preprocessing

12/30

Mainstream Approaches: Lazy Approach

R1 R2

. . .

Rn

δR1

Update to R1

i

i′

residual query

Update: Maintain only the base relations

12/30

Mainstream Approaches: Lazy Approach

R1 R2

. . .

Rn

δR1

Update to R1

i

i′

residual query

Enumeration: Given a tuple over the input variables, set the input variables
to constants and evaluate the residual query

12/30

Mainstream Approaches: Lazy Approach

R1 R2

. . .

Rn

δR1

Update to R1

i

i′

residual query

Enumeration: Given a tuple over the input variables, set the input variables
to constants and evaluate the residual query

13/30

Contributions of the Paper

We have discussed the two mainstream approaches in the previous slides.

We propose two algorithms that improve the mainstream approaches:

1. Avoiding full materialization in the eager approach while keeping
constant-delay enumeration

2. Understanding the update time - enumeration delay trade-off space

I Eager and lazy approaches are extremes in this space

13/30

Contributions of the Paper

We have discussed the two mainstream approaches in the previous slides.

We propose two algorithms that improve the mainstream approaches:

1. Avoiding full materialization in the eager approach while keeping
constant-delay enumeration

2. Understanding the update time - enumeration delay trade-off space

I Eager and lazy approaches are extremes in this space

13/30

Contributions of the Paper

We have discussed the two mainstream approaches in the previous slides.

We propose two algorithms that improve the mainstream approaches:

1. Avoiding full materialization in the eager approach while keeping
constant-delay enumeration

2. Understanding the update time - enumeration delay trade-off space

I Eager and lazy approaches are extremes in this space

13/30

Contributions of the Paper

We have discussed the two mainstream approaches in the previous slides.

We propose two algorithms that improve the mainstream approaches:

1. Avoiding full materialization in the eager approach while keeping
constant-delay enumeration

2. Understanding the update time - enumeration delay trade-off space

I Eager and lazy approaches are extremes in this space

14/30

Contribution 1: Eager-Factorized Approach

The eager approach maintains the listing representation of the CQAP result.

We propose the eager-factorized approach that maintains a set of factorized
representations that is specialized for the access pattern:

1. Decompose the CQAP into a set of (smaller) sub-queries

2. For each sub-query, maintain a factorized representation of its result

I More succinct than the listing representation of the query result
I Less time to compute and maintain

3. The factorized representations support

I Access requests with any values over the input variables
I Constant-delay enumeration

14/30

Contribution 1: Eager-Factorized Approach

The eager approach maintains the listing representation of the CQAP result.

We propose the eager-factorized approach that maintains a set of factorized
representations that is specialized for the access pattern:

1. Decompose the CQAP into a set of (smaller) sub-queries

2. For each sub-query, maintain a factorized representation of its result

I More succinct than the listing representation of the query result
I Less time to compute and maintain

3. The factorized representations support

I Access requests with any values over the input variables
I Constant-delay enumeration

14/30

Contribution 1: Eager-Factorized Approach

The eager approach maintains the listing representation of the CQAP result.

We propose the eager-factorized approach that maintains a set of factorized
representations that is specialized for the access pattern:

1. Decompose the CQAP into a set of (smaller) sub-queries

2. For each sub-query, maintain a factorized representation of its result

I More succinct than the listing representation of the query result
I Less time to compute and maintain

3. The factorized representations support

I Access requests with any values over the input variables
I Constant-delay enumeration

14/30

Contribution 1: Eager-Factorized Approach

The eager approach maintains the listing representation of the CQAP result.

We propose the eager-factorized approach that maintains a set of factorized
representations that is specialized for the access pattern:

1. Decompose the CQAP into a set of (smaller) sub-queries

2. For each sub-query, maintain a factorized representation of its result

I More succinct than the listing representation of the query result
I Less time to compute and maintain

3. The factorized representations support

I Access requests with any values over the input variables
I Constant-delay enumeration

14/30

Contribution 1: Eager-Factorized Approach

The eager approach maintains the listing representation of the CQAP result.

We propose the eager-factorized approach that maintains a set of factorized
representations that is specialized for the access pattern:

1. Decompose the CQAP into a set of (smaller) sub-queries

2. For each sub-query, maintain a factorized representation of its result

I More succinct than the listing representation of the query result
I Less time to compute and maintain

3. The factorized representations support

I Access requests with any values over the input variables
I Constant-delay enumeration

15/30

Example 1

Consider the query Q(B,C,D, E | A) = R(A,B,C), S(A,B,D),T(A, E)

A

B E

C D
T(A, E)

R(A,B,C) S(A,B,D)

Q(B,C,D, E | A)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

A2

E

T(A2, E)

Q2(E | A2)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

15/30

Example 1

Consider the query Q(B,C,D, E | A) = R(A,B,C), S(A,B,D),T(A, E)

A

B E

C D
T(A, E)

R(A,B,C) S(A,B,D)

Q(B,C,D, E | A)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

A2

E

T(A2, E)

Q2(E | A2)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

15/30

Example 1

Consider the query Q(B,C,D, E | A) = R(A,B,C), S(A,B,D),T(A, E)

A

B E

C D
T(A, E)

R(A,B,C) S(A,B,D)

Q(B,C,D, E | A)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

A2

E

T(A2, E)

Q2(E | A2)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(A1)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(A1)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)
for each c ∈ R(a, b,C)

for each d ∈ S(a, b,D)
output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)
for each c ∈ R(a, b,C)

for each d ∈ S(a, b,D)
output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(a,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)

for each c ∈ R(a, b,C)
for each d ∈ S(a, b,D)

output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(a, b)

V′C(A1,B)

R(a, b,C)

V′D(A1,B)

S(A1,B,D)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)
for each c ∈ R(a, b,C)

for each d ∈ S(a, b,D)
output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(a, b)

V′C(A1,B)

R(a, b, c)

V′D(A1,B)

S(a, b,D)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)
for each c ∈ R(a, b,C)

for each d ∈ S(a, b,D)

output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

16/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(a, b)

V′C(A1,B)

R(a, b, c)

V′D(A1,B)

S(a, b, d)

Given an input A1-value a

check whether a ∈ VA1(A)

for each b ∈ VB(a,B)
for each c ∈ R(a, b,C)

for each d ∈ S(a, b,D)
output (a, b, c, d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

17/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

17/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

Given an update δR(a, b, c)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

17/30

Example 1

Consider the sub-query Q1(B,C,D | A1) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B,C,D | A1)

VA1(a)

VB(A1,B)

V′C(A1,B)

R(A1,B,C)

V′D(A1,B)

S(A1,B,D)

δVA1(a)

δVB(a, b)

δV′C(a, b)

δR(a, b, c)

V′D(A,B)

S(A1,B,D)

Given an update δR(a, b, c)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N) O(1) O(1)

18/30

Example 2

Consider the query Q(B, E | A,C,D) = R(A,B,C), S(A,B,D),T(A, E)

A

B E

C D
T(A, E)

R(A,B,C) S(A,B,D)

Q(B, E | A,C,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

A2

E

T(A2, E)

Q2(E | A2)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

18/30

Example 2

Consider the query Q(B, E | A,C,D) = R(A,B,C), S(A,B,D),T(A, E)

A

B E

C D
T(A, E)

R(A,B,C) S(A,B,D)

Q(B, E | A,C,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

A2

E

T(A2, E)

Q2(E | A2)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

19/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(A1)

VC(A1,C)

VD(A1,C,D)

VB(A1,B,C,D)

R(A1,B,C) S(A1,B,D)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

19/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(a)

VC(a, c)

VD(a, c, d)

VB(a, c, d,B)

R(A1,B,C) S(A1,B,D)

Given an input tuple (a, c, d)
over (A1,C,D)

check (a, c, d) ∈ VD(A1,C,D)
for each b ∈ VB(a, c, d,B)

output (a,b,c,d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

19/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(a)

VC(a, c)

VD(a, c, d)

VB(a, c, d,B)

R(A1,B,C) S(A1,B,D)

Given an input tuple (a, c, d)
over (A1,C,D)

check (a, c, d) ∈ VD(A1,C,D)
for each b ∈ VB(a, c, d,B)

output (a,b,c,d)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

20/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(A1)

VC(A1,C)

VD(A1,C,D)

VB(A1,B,C,D)

R(A1,B,C) S(A1,B,D)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

20/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(A1)

VC(A1,C)

VD(A1,C,D)

VB(A1,B,C,D)

R(A1,B,C) S(A1,B,D)
Given an update δR(a, b, c)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

20/30

Example 2

Consider the sub-query Q1(B | A1,C,D) = R(A1,B,C), S(A1,B,D)

A1

B

C D

R(A1,B,C) S(A1,B,D)

Q1(B | A1,C,D)

VA1(A1)

VC(A1,C)

VD(A1,C,D)

VB(A1,B,C,D)

R(A1,B,C) S(A1,B,D)

δVA1(a)

δVC(a, c)

δVD(a, c,D)

δVB(a, b, c,D)

δR(a, b, c) S(A,B,D)

Given an update δR(a, b, c)

Preprocessing Delay Update

Eager O(N3) O(1) O(N2)

Eager-Factorized O(N2) O(1) O(N)

21/30

Different Access Patterns Result in Different Costs

Consider the query Q(O | I) = R(A,B,C), S(A,B,D), T(A, E). The table shows
the evaluation costs of our approach for different access patterns.

O I Preprocessing Delay Update

{A,B,C,D, E} { } O(N) O(1) O(1)
{ } {A,B,C,D, E} O(N) O(1) O(1)

{A,C,D, E} {B} O(N) O(1) O(N)

{A,C,D} {B, E} O(N2) O(1) O(N)

{A, E} {B,C,D} O(N2) O(1) O(N2)

{A,B} {C,D, E} O(N3) O(1) O(N2)

.

Eager O(N3) O(1) O(N2)

22/30

Summary of Contribution 1

I A dynamic evaluation approach for arbitrary CQAPs

I For a CQAP with static width w and dynamic width δ, our approach admits

I Preprocessing: O(Nw)

I Update: O(Nδ)

I Enumeration delay: O(1)
I Static width: s↑[OZ15] or faqw[AKNR16] specialized to the access pattern

I Dynamic width: maximal static width over all delta queries

23/30

Dichotomy Result

CQAP0: static width w = 1 and dynamic width δ = 0

Consider a CQAP query Q and a database of size N.

I If Q is in CQAP0, then it admits O(N) preprocessing time, O(1)
enumeration delay, and O(1) update time for single-tuple updates.

I If Q is not in CQAP0 and has no repeating relation symbols, then there is
no algorithm that computes Q with arbitrary preprocessing time,
O(N

1
2−γ) enumeration delay, and O(N

1
2−γ) amortized update time, for

any γ > 0, unless the OMv conjecture fails.

24/30

Contribution 2: Trade-Offs in Dynamic Query Evaluation

The eager (listing or factorized) and lazy approaches are the two extremes.

Eager

Constant enumeration delay

High update time

Lazy

High enumeration delay

Constant update time

Performs well when
updates are less frequent

than access requests

Performs well when
access requests are less
frequent than updates

Trade-offs

Ours

24/30

Contribution 2: Trade-Offs in Dynamic Query Evaluation

The eager (listing or factorized) and lazy approaches are the two extremes.

Eager

Constant enumeration delay

High update time

Lazy

High enumeration delay

Constant update time

Performs well when
updates are less frequent

than access requests

Performs well when
access requests are less
frequent than updates

Trade-offs

Ours

24/30

Contribution 2: Trade-Offs in Dynamic Query Evaluation

The eager (listing or factorized) and lazy approaches are the two extremes.

Eager

Constant enumeration delay

High update time

Lazy

High enumeration delay

Constant update time

Performs well when
updates are less frequent

than access requests

Performs well when
access requests are less
frequent than updates

Trade-offs

Ours

25/30

Contribution 2: Trade-Offs in Dynamic Query Evaluation

Example: Consider query Q(A,C,D, E | B) = R(A,B,C), S(A,B,D), T(A, E).

Delay Update

Eager O(1) O(N2)

Eager-Factorized O(1) O(N)

Lazy O(N) O(1)
Trade-off O(N1−ε) O(Nε)

Evaluation costs of different approaches; ε ∈ [0, 1]
0 1 2

1

logN delay

logN update time

Lazy

Eager
Factorized

Eager

Trade-off

26/30

Contribution 2: Trade-Offs in Dynamic Query Evaluation

Trade-offs between preprocessing time, enumeration delay and update time

For a CQAP with a hierarchical fracture with

I Static width w

I Dynamic width δ (δ can be w or w − 1)

Optimality results for the CQAPs with hierarch-
ical fractures

I Strongly Pareto optimal:

CQAP0 (w = 1, δ = 0)

I Weakly Pareto optimal:

CQAP1 (w = 1, δ = 1)

0 1

1

w − 1

w

ε

logN time

preprocessing time 1 + (w − 1)ε
update time δε

delay 1 − ε

27/30

Summary

Fully dynamic evaluation for CQAPs

1. A dynamic evaluation approach for arbitrary CQAPs

2. A dichotomy result in the evaluation of CQAPs

3. Evaluation trade-offs for CQAPs

28/30

References I

[AKNR16] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ:
Questions Asked Frequently. In PODS, pages 13–28, 2016.

[OZ15] Dan Olteanu and Jakub Závodný. Size Bounds for Factorised
Representations of Query Results. ACM TODS, 40(1):2:1–2:44,
2015.

29/30

Appendix: Query Fracture

Consider the triangle query

Q(B,C | A) = R(A,B), S(B,C), T(A,C).

By replacing A with A1 and A2, we get

Q′(B,C | A1,A2) = R(A1,B), S(B,C), T(C,A2).

The static width increases from w(Q) = 1.5 to w(Q′) = 2.

30/30

Appendix: Query Fracture

Consider the 4-cycle query

Q(B,D|A,C) = R(A,B), S(B,C), T(C,D),U(A,D).

A

B D

C

R(A,B)

S(B,C)

U(A,D)

T(C,D)

A1 A2

B D

C1 C2

R(A1,B)

S(B,C1)

U(A2,D)

T(C2,D)

	Section 1
	Subsection a

	References

