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Abstract
We study the problem of answering conjunctive queries with free access patterns under updates. A
free access pattern is a partition of the free variables of the query into input and output. The query
returns tuples over the output variables given a tuple of values over the input variables.

We introduce a fully dynamic evaluation approach for such queries. We also give a syntactic
characterisation of those queries that admit constant time per single-tuple update and whose output
tuples can be enumerated with constant delay given an input tuple. Finally, we chart the complexity
trade-off between the preprocessing time, update time and enumeration delay for such queries. For
a class of queries, our approach achieves optimal, albeit non-constant, update time and delay. Their
optimality is predicated on the Online Matrix-Vector Multiplication conjecture. Our results recover
prior work on the dynamic evaluation of conjunctive queries without access patterns.
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1 Introduction

We consider the problem of dynamic evaluation for conjunctive queries with access restrictions.
Restricted access to data is commonplace [28, 29, 27]: For instance, the flight information
behind a user-interface query can only be accessed by providing values for specific input
fields such as the departure and destination airports in a flight booking database.

We formalise such queries as conjunctive queries with free access patterns (CQAP for
short): The free variables of a CQAP are partitioned into input and output. The query yields
tuples of values over the output variables given a tuple of values over the input variables.
In database systems, CQAPs formalise the notion of parameterized queries (or prepared
statements) [1]. In probabilistic graphical models, they correspond to conditional queries
[25]: Such inference queries ask for (the probability of) each possible value of a tuple of
random variables (corresponding to CQAP output variables) given specific values for a tuple
of random variables (corresponding to CQAP input variables). Prior work on queries with
access patterns considered a more general setting than CQAP: There, each relation in the
query body may have input and output variables such that values for the latter can only be
obtained if values for the former are supplied [15, 34, 12, 5, 6]. In this more general setting,
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18:2 Conjunctive Queries with Free Access Patterns under Updates

and in sharp contrast to our simpler setting, a fundamental question is whether the query
can even be answered for a given access pattern to each relation [28, 29, 27].

We introduce a fully dynamic evaluation approach for CQAPs. It is fully dynamic in the
sense that it supports both inserts and deletes of tuples to the input database. It computes a
data structure that supports the enumeration of the distinct output tuples for any values of
the input variables and maintains this data structure under updates to the input database.

Our analysis of the overall computation time is refined into three components. The
preprocessing time is the time to compute the data structure before receiving any updates.
Given a tuple over the input variables, the enumeration delay is the time between the start of
the enumeration process and the output of the first tuple, the time between outputting any
two consecutive tuples, and the time between outputting the last tuple and the end of the
enumeration process [13]. The update time is the time used to update the data structure1 for
one single-tuple update. The preprocessing step may be replaced by a sequence of inserts to
the initially empty database. However, as shown in prior work on conjunctive queries under
updates [19, 21], bulk inserts, as performed in the preprocessing step, may take asymptotically
less time than a sequence of single-tuple inserts.

There are simple, albeit more expensive alternatives to our approach. For instance, on
an update request we may only update the input database, and on an enumeration request
we may use an existing enumeration algorithm for the residual query obtained by setting
the input variables to constants in the original query. However, such an approach needs
time-consuming and independent preparation for each enumeration request, e.g., to remove
dangling tuples and possibly create a data structure to support enumeration. In contrast, the
data structure constructed by our approach shares this preparation across the enumeration
requests and can readily serve enumeration requests for any values of the input variables.

The contributions of this paper are as follows.
Section 3 introduces the CQAP language. Two new notions account for the nature of

free access patterns: access-top variable orders and query fractures.
An access-top variable order is a decomposition of the query into a rooted forest of

variables, where: the input variables are above all other variables; and the free (input and
output) variables are above the bound variables. This variable order is compiled into a forest
of view trees, which is a data structure that represents compactly the query output.

Since access to the query output requires fixing values for the input variables, the query
can be fractured by breaking its joins on the input variables and replacing each of their
occurrences with fresh variables within each connected component of the query hypergraph.
This does not violate the access pattern, since each fresh input variable can be set to the
corresponding given input value. Yet this may lead to structurally simpler queries whose
dynamic evaluation admits lower complexity.

Section 3 also introduces the static and dynamic widths that capture the complexities of
the preprocessing and respectively update steps. For a given CQAP, these widths are defined
over the access-top variable orders of the fracture of the query.

Section 4 introduces our approach for CQAP evaluation. Computing and maintaining
each view in the view tree accounts for preprocessing and respectively updates, while the
view tree as a whole allows for the enumeration of the output tuples with constant delay.

Section 5 gives a syntactic characterisation of those CQAPs that admit linear-time
preprocessing and constant-time update and enumeration delay. We call this class CQAP0.

1 We do not allow updates during the enumeration; this functionality is orthogonal to our contributions
and can be supported using a versioned data structure.
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All queries outside CQAP0 do not admit constant-time update and delay regardless of the
preprocessing time, unless the widely held Online Matrix-Vector Multiplication conjecture [17]
fails. Our dichotomy generalises a prior dichotomy for q-hierarchical queries without access
patterns [7]. The q-hierarchical queries are in CQAP0, yet they have no input variables. The
class CQAP0 further contains cyclic queries with input variables. For instance, the edge
triangle detection problem is in CQAP0: Given an edge (u, v), check whether it participates in
a triangle. The smallest query patterns not in CQAP0 strictly include the non-q-hierarchical
ones and also contain others that are sensitive to the interplay of the output and input
variables. Proving that they do not admit constant-time update and delay requires different
and additional hardness reductions from the Online Matrix-Vector Multiplication problem.

Section 6 charts the preprocessing time - update time - enumeration delay trade-off for
the dynamic evaluation of the class of CQAPs whose fractures are hierarchical. It shows
that as the preprocessing and update times increase, the enumeration delay decreases. Our
trade-off reveals the optimality for a particular class of CQAPs with hierarchical fractures,
called CQAP1, which lies outside CQAP0: The complexity of CQAP1 for both the update
time and the enumeration delay matches the lower bound Ω(N 1

2 ) for queries outside CQAP0,
where N is the size of the input database. This is weakly Pareto optimal as we cannot lower
both the update time and delay complexities (whether one of them can be lowered remains
open). Our approach for CQAP1 exhibits a continuum of trade-offs: O(N1+ϵ) preprocessing
time, O(N ϵ) amortized update time and O(N1−ϵ) enumeration delay, for ϵ ∈ [0, 1]. By
tweaking the parameter ϵ, one can optimise the overall time for a sequence of enumeration
and update tasks and achieve an asymptotically lower compute time than prior work. A
well-studied query in CQAP1 is the Dynamic Set Intersection problem [26]: We are given
sets S1, ..., Sm subject to element insertions and deletions. For each access request (i, j) with
i, j ∈ [m], we need to decide whether the intersection of Si and Sj is empty. Our approach
recovers the complexity given by prior work [26] for this problem using ϵ = 0.5.

2 Preliminaries

Data Model. A schema X = (X1, . . . , Xn) is a tuple of distinct variables. Each variable
Xi has a discrete domain Dom(Xi). We treat schemas and sets of variables interchangeably,
assuming a fixed ordering of variables. A tuple x of values has schema X = Sch(x) and
is an element from Dom(X ) = Dom(X1) × · · · × Dom(Xn). A relation R over schema X is
a function R : Dom(X ) → Z such that the multiplicity R(x) is non-zero for finitely many
tuples x. A tuple x is in R, denoted by x ∈ R, if R(x) ̸= 0. The size |R| of R is the size
of the set {x | x ∈ R}. A database is a set of relations and has size given by the sum of
the sizes of its relations. Given a tuple x over schema X and S ⊆ X , x[S] is the restriction
of x onto S. For a relation R over schema X , schema S ⊆ X , and tuple t ∈ Dom(S):
σS=tR = { x | x ∈ R ∧ x[S] = t } is the set of tuples in R that agree with t on the variables
in S; πSR = { x[S] | x ∈ R } stands for the set of tuples in R projected onto S, i.e., the set
of distinct S-values from the tuples in R with non-zero multiplicities. For a relation R over
schema X and Y ⊆ X , the indicator projection IYR is a relation over Y such that [2]:

for all y ∈ Dom(Y) : IYR(y) =
{

1 if there is t ∈ R such that y = t[Y]
0 otherwise

An update is a relation where tuples with positive multiplicities represent inserts and
tuples with negative multiplicities represent deletes. Applying an update to a relation means
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18:4 Conjunctive Queries with Free Access Patterns under Updates

unioning the update with the relation. A single-tuple update to a relation R is a singleton
relation δR = {x → m}, where the multiplicity m = δR(t) of the tuple t in δR is non-zero.

Computational Model. We consider the RAM model of computation. Each relation or
materialised view R over schema X is implemented by a data structure that stores key-value
entries (x, R(x)) for each tuple x with R(x) ̸= 0 and needs O(|R|) space. This data structure
can: (1) look up, insert, and delete entries in (amortised) constant time, (2) enumerate all
stored entries in R with constant delay, and (3) report |R| in constant time. For a schema
S ⊂ X , we use an index data structure that for any t ∈ Dom(S) can: (4) enumerate all
tuples in σS=tR with constant delay, (5) check t ∈ πSR in constant time; (6) return |σS=tR|
in constant time; and (7) insert and delete index entries in (amortised) constant time.

We next exemplify a data structure that conforms to the above computational model.
Consider a relation (materialized view) R over schema X . A hash table with chaining stores
key-value entries (x, R(x)) for each tuple x over X with R(x) ̸= 0. The entries are doubly
linked to support enumeration with constant delay. The hash table can report the number of
its entries in constant time and supports lookups, inserts, and deletes in constant time on
average, under the assumption of simple uniform hashing.

To support index operations on a schema F ⊂ X , we create another hash table with
chaining where each table entry stores a tuple t of F-values as key and a doubly-linked list
of pointers to the entries in R having the F-values t as value. Looking up an index entry
given t takes constant time on average under simple uniform hashing, and its doubly-linked
list enables enumeration of the matching entries in R with constant delay. Inserting an index
entry into the hash table additionally prepends a new pointer to the doubly-linked list for a
given t; overall, this operation takes constant time on average. For efficient deletion of index
entries, each entry in R also stores back-pointers to its index entries (one back-pointer per
index for R). When an entry is deleted from R, locating and deleting its index entries in
doubly-linked lists takes constant time per index.

3 Conjunctive Queries with Free Access Patterns

We introduce the queries investigated in this paper along with several of their properties. A
conjunctive query with free access patterns (CQAP for short) has the form

Q(O|I) = R1(X1), . . . , Rn(Xn).

We denote by: (Ri)i∈[n] the relation symbols; (Ri(Xi))i∈[n] the atoms; vars(Q) =
⋃

i∈[n] Xi

the set of variables; atoms(X) the set of the atoms containing the variable X; atoms(Q) =
{Ri(Xi) | i ∈ [n]} the set of all atoms; and free(Q) = O∪I ⊆ vars(Q) the set of free variables,
which are partitioned into input variables I and output variables O. An empty set of input
or output variables is denoted by a dot (·).

Given a database D and a tuple i over I, the output of Q for the input tuple i is denoted
by Q(O|i) and is defined by πOσI=iQ(D): This is the set of tuples o over O such that the
assignment i ◦ o to the free variables satisfies the body of Q.

The hypergraph of a query Q is H = (V = vars(Q), E = {{Xi | i ∈ [n]}}), whose vertices
are the variables and hyperedges are the schemas of the atoms in Q. The fracture of a CQAP
Q is a CQAP Q† constructed as follows. We start with Q† as a copy of Q. We replace
each occurrence of an input variable by a fresh variable. Then, we compute the connected
components of the hypergraph of the modified query. Finally, we replace in each connected
component of the modified query all new variables originating from the same input variable
by one input variable.
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We next define the notion of dominance for variables in a CQAP Q. For variables A and
B, we say that B dominates A if atoms(A) ⊂ atoms(B). The query Q is free-dominant (input-
dominant) if for any two variables A and B, it holds: if A is free (input) and B dominates
A, then B is free (input). The query Q is almost free-dominant (almost input-dominant)
if: (1) For any variable B that is not free (input) and for any atom R(X ) ∈ atoms(B),
there is another atom S(Y) ∈ atoms(B) such that X ∪ Y cover all free (input) variables
dominated by B; (2) Q is not already free-dominant (input-dominant). A query Q is
hierarchical if for any A, B ∈ vars(Q), either atoms(A) ⊆ atoms(B), atoms(B) ⊆ atoms(A),
or atoms(B) ∩ atoms(A) = ∅. A query is q-hierarchical if it is hierarchical and free-dominant.

▶ Definition 1. A query is in CQAP0 if its fracture is hierarchical, free-dominant, and input-
dominant. A query is in CQAP1 if its fracture is hierarchical and is almost free-dominant,
or almost input-dominant, or both.

The subset of CQAP0 without input variables is the class of q-hierarchical queries [7].

▶ Example 2. The query Q1(A, C | B, D) = R(A, B), S(B, C), T (C, D), U(A, D) is input-
dominant, free-dominant, but not hierarchical. Its fracture Q†(A, C | B1, B2, D1, D2) =
R(A, B1), S(B2, C), T (C, D1), U(A, D2) is hierarchical but not input-dominant: C dominates
both B2 and D1 and A dominates both B1 and D2, yet A and C are not input. It is however
almost input-dominant: A is not input and for any of its atoms R(A, B1) and U(A, D2),
there is another atom U(A, D2) and respectively R(A, B1) such that both R(A, B1) and
U(A, D2) cover the variables B1 and D2 dominated by A; a similar reasoning applies to C.
This means that Q1 is in CQAP1.

The query Q2(A | B) = S(A, B), T (B) is in CQAP0, since its fracture Q†(A | B1, B2) =
S(A, B1), T (B2) is hierarchical, free-dominant, and input-dominant.

The query Q3(B | A) = S(A, B), T (B) is in CQAP1. Its fracture is the query itself. It is
hierarchical, yet not input-dominant, since B dominates A and is not input. It is, however,
almost input-dominant: for each atom of B, there is one other atom such that together they
cover A. Indeed, atom S(A, B) already covers A, and it also does so together with T (B);
atom T (B) does not cover A, but it does so together with S(A, B).

The following are the smallest hierarchical queries that are not in CQAP0 but in CQAP1:
Q(A | ·) = R(A, B), S(B); Q(B | A) = R(A, B), S(B); and Q(· | A) = R(A, B), S(B). ⌟

3.1 Variable Orders
Variable orders are used as logical plans for the evaluation of conjunctive queries [31]. We
next adapt them to CQAPs. Given a query, two variables depend on each other if they occur
in the same query atom. A variable order (VO) ω for a CQAP Q is a pair (Tω, depω), where:

Tω is a (rooted) forest with one node per variable. The variables of each atom in Q lie
along the same root-to-leaf path in Tω.
The function depω maps each variable X to the subset of its ancestor variables in Tω on
which the variables in the subtree rooted at X depend.

An extended VO is a VO where we add as new leaves atoms corresponding to relations
and their indicator projections. We add each atom in the query as child of its variable placed
lowest in the VO. We explain next how the indicator projections are added to a VO ω. The
role of the indicators is to reduce the asymptotic complexity of cyclic queries [2].

Given a CQAP Q and a VO ω, where the atoms of Q have been already added, the
function indicators in Figure 1 extends ω with indicator projections. At each variable X in

ICDT 2023



18:6 Conjunctive Queries with Free Access Patterns under Updates

indicators(CQAP Q, VO ω) : extended VO

switch ω:

R(Y) 1 return R(Y)
X

ω1 . . . ωk

2 let ω̂i = indicators(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and R be the set of atoms in ω

4 let I = { IZR(Z) | R(Y) ∈ (atoms(Q) \ R) and Z = Y ∩ S ̸= ∅ }
5 let {I1, ..., Iℓ} = GYO∗(I, R)

6 return

 X

ω̂1 . . . ω̂k I1 . . . Iℓ

Figure 1 Adding indicator projections to a VO ω of a CQAP Q. The function indicators is defined
using pattern matching on the structure of the VO ω, which can be a leaf or an inner node (cf.
left column under switch). Each variable X in ω gets as new children the indicator projections
of relations that do not occur in the subtree rooted at X but form a cycle with those that occur.
GYO∗ (Section 3.1) is based on the GYO reduction [4].

ω, we compute the set I of all possible indicator projections (Line 4). Such indicators IZR

are for relations R whose atoms are not included in the subtree rooted at X but share a
non-empty set Z of variables with {X} ∪ depω(X). We choose from this set those indicators
that form a cycle with the atoms in the subtree of ω rooted at X (Line 5). We achieve this
using a variant of the GYO reduction [4]. Given the hypergraph formed by the hyperedges
representing these indicators I and the atoms R, GYO repeatedly applies two rules until it
reaches a fixpoint: (1) Remove a node that only appears in one hyperedge; (2) Remove a
hyperedge that is included in another hyperedge. If the result of GYO is a hypergraph with
no nodes and one empty hyperedge, then the input hypergraph is (α-)acyclic. Otherwise,
the input hypergraph is cyclic and the GYO’s output is a hypergraph with cycles. Our GYO
variant, dubbed GYO∗ in Figure 1, returns the hyperedges that originated from the indicator
projections in I and contribute to this non-empty output hypergraph. The chosen indicator
projections become children of X (Line 6).

In the rest of this paper, whenever we refer to a variable order, we always assume an
extended VO.

▶ Example 3. Consider the triangle CQAP query

Q(B, C|A) = R(A, B), S(B, C), T (C, A).

The fracture Q† of Q is the query itself. Figure 2 depicts a VO ω for Q. The input variable
A is on top of the output variables B and C. At variable C, the function indicators from
Figure 1 creates an indicator projection IA,BR since the relation R is not under C but forms
a cycle with the relations S and T . ⌟

We introduce notation for an extended VO ω. Its subtree rooted at X is denoted by ωX .
The sets vars(ω) and ancω(X) consist of all variables of ω and respectively the variables on
the path from X to the root excluding X. We denote by atoms(ω) all atoms and indicators
at the leaves of ω and by QX the join of all atoms atoms(ω) (all variables are free).

We next introduce classes of VOs for CQAP queries. A VO ω is canonical if the variables
of the leaf atom of each root-to-leaf path are the inner nodes of the path. Hierarchical queries
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dep(A) = ∅
dep(B) = {A}

dep(C) = {A, B}

A

B

C

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

VA(A)

VB(A, B)

V ′
C(A, B)

VC(A, B, C)

S(B, C) T (C, A)

R(A, B)

IA,BR(A, B)

Figure 2 Left: (Access-top extended) VO for the query Q(B, C|A) = R(A, B), S(B, C), T (C, A).
Right: The view tree constructed from this VO. Note the indicator IA,BR(A, B) added below the
variable C (left) and below the view VC (right).

are precisely those conjunctive queries that admit canonical variable orders. A VO ω is
free-top if no bound variable is an ancestor of a free variable. It is input-top if no output
variable is an ancestor of an input variable. The sets of free-top and input-top VOs for Q

are denoted as free-top(Q) and input-top(Q), respectively. A VO is called access-top if it is
free-top and input-top: acc-top(Q) = free-top(Q) ∩ input-top(Q).

▶ Example 4. The query Q(B|A) = R(A, B), S(B) admits the VO (in term notation; "-"
represents the parent-child relationship): B − {A − R(A, B), S(B)}, where B has the variable
A and the atom S(B) as children and A has the atom R(A, B) as child. The dependency
sets are dep(B) = ∅ and dep(A) = {B}. This VO is free-top, since both variables are free; it
is not input-top, since the output variable B is on top of the input variable A. By swapping
A and B in the order, it becomes input-top and then also access-top; the dependencies then
become: dep(A) = ∅ and dep(B) = {A}.

The triangle query Q(A, B|·) = R(A, B), S(B, C), T (A, C) admits the VO C − A −
{T (A, C), B − {R(A, B), S(B, C), IACT (A, C)}}, where one child of B is the indicator pro-
jection IACT of T on {A, C}. The dependency sets are dep(C) = ∅, dep(A) = {C}, and
dep(B) = {A, C}. The VO is input-top, since the query has no input variables; it is not
free-top, since the bound variable C is on top of the free variables A and B.

The fracture of the 4-cycle query in Example 2 admits the access-top VO consisting
of two disconnected paths: B1 − D2 − A − {R(A, B1), U(A, D2)} and B2 − D1 − C −
{S(B2, C), T (C, D1)}, where the dependency sets are: dep(A) = {B1, D2}, dep(D2) = {B1},
dep(B1) = dep(B2) = ∅, dep(C) = {B2, D1}, and dep(D1) = {B2}. ⌟

3.2 Width Measures
We next introduce two width measures for a VO ω and CQAP Q. They capture the complexity
of computing and maintaining the output of Q.

▶ Definition 5. The static width w(ω) and dynamic width δ(ω) of a VO ω are:

w(ω) = max
X∈vars(ω)

ρ∗
QX

({X} ∪ depω(X))

δ(ω) = max
X∈vars(ω)

max
R(Y)∈atoms(ωX )

ρ∗
QX

(({X} ∪ depω(X)) \ Y)

For a query QX and a set of variables X = {X} ∪ depω(X), the fractional edge cover
number [3] ρ∗

QX
(X ) defines a worst-case upper bound on the time needed to compute QX(X ).

Here, QX is the join of all atoms under X in the VO ω. The static width w of a VO ω is
then defined by the maximum over the fractional edge cover numbers of the queries QX for
the variables X in ω. The dynamic width is defined similarly, with one simplification: We
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18:8 Conjunctive Queries with Free Access Patterns under Updates

consider every case of a relation (or indicator projection) R being replaced by a single-tuple
update, so its variables Y are all set to constants and can be ignored in the computation of
the fractional edge cover number.

We consider the standard lexicographic ordering ≤ on pairs of dynamic and static widths:
(δ1, w1) ≤ (δ2, w2) if δ1 ≤ δ2 or δ1 = δ2 and w1 ≤ w2. Given a set S of VOs, we define
minω∈S(δ(ω), w(ω)) = (δ, w) such that ∀ω ∈ S : (δ, w) ≤ (δ(ω), w(ω)).

▶ Definition 6. The dynamic width δ(Q) and static width w(Q) of a CQAP Q are:

(δ(Q), w(Q)) = min
ω∈acc-top(Q†)

(δ(ω), w(ω))

Since we are interested in dynamic evaluation, Definition 6 first minimises for the dynamic
width and then for the static width. To determine the dynamic and the static width of a
CQAP Q, we first search for the VOs of the fracture Q† with minimal dynamic width and
choose among them one with the smallest static width. The extended technical report [22]
further expands on the width measures with examples and properties.

▶ Example 7. Consider the query Q(O | I) = R(A, B, C), S(A, B, D), T (A, E). The static
width w and the dynamic width δ of Q vary depending on the access pattern:
For Q({C, D, E} | {A, B}), w = 1 and δ = 0. For Q({A, C, D, E} | {B}), w = 1 and δ = 1.
For Q({A, C, D} | {B, E}), w = 2 and δ = 1. For Q({A, E} | {B, C, D}), w = 2 and δ = 2.
For Q({A, B} | {C, D, E}), w = 3 and δ = 2. For Q({A, B, C, D, E}|·), Q(·|{A, B, C, D, E})
and Q({B, C, D, E}|{A}), w = 1 and δ = 0.

Recall the triangle CQAP query Q(B, C|A) = R(A, B), S(B, C), T (C, A) from Example 3
and its access-top VO in Figure 2. By adding the indicator IA,BR below C, the frac-
tional edge cover number ρ∗({C} ∪ dep(C)) = ρ∗({A, B, C}) of the query QC(A, B, C) =
S(B, C), T (C, A), IA,BR(A, B) reduces from 2 to 3

2 . This fractional edge cover number is
the largest one among the fractional edge cover numbers of the queries induced by other
variables, thus the static width of the VO ω is 3

2 .
The dynamic width of ω is dominated by the fractional edge cover number ρ∗({C} ∪

dep(C)) − S) = ρ∗({A, B, C} − S) of the query QC , where S is the schema of S, T , or IA,BR.
In each of these three cases, {A, B, C} − S consists of a single variable. Hence, the fractional
edge cover number is 1 and then the dynamic width of ω is 1. ⌟

4 CQAP Evaluation

In this section, we introduce a fully dynamic evaluation approach for arbitrary CQAPs whose
complexity is stated in the following theorem.

▶ Theorem 8. Given a CQAP with static width w and dynamic width δ and a database of
size N , the query can be evaluated with O(Nw) preprocessing time, O(Nδ) update time under
single-tuple updates, and O(1) enumeration delay.

Our approach has three stages: preprocessing, enumeration, and updates. They are
detailed in the following subsections. We consider in the following a fixed CQAP Q(O|I), its
fracture Q†(O|I†), and a database of size N .

4.1 Preprocessing
In the preprocessing stage, we construct a set of view trees that represent the result of Q†
over both its input and output variables. A view tree [30] is a (rooted) tree with one view



A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 18:9

τ(VO ω) : view tree

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . . ωk

2 let Ti = τ(ωi) ∀i ∈ [k]
3 let S = {X} ∪ depω(X) and VX(S) = join of roots of T1, ..., Tk

4 if X has no sibling return


VX(S)

T1 . . . Tk

5 let V ′
X(S \ {X}) = VX(S) return


V ′

X(S \ {X})

VX(S)

T1 . . . Tk

Figure 3 Constructing a view tree following a VO ω. The function τ is defined using pattern
matching on the structure of the VO ω, which can be a leaf or an inner node (cf. left column under
switch). At each variable X in ω, the function creates a view VX whose schema consists of X and
the dependency set of X. If X has siblings, it adds a view on top of VX that marginalises out X.

per node. It is a logical project-join plan in the classical database systems literature, but
where each intermediate result is materialised. The view at a node is defined as the join of
the views at its children, possibly followed by a projection. The view trees are modelled
following an access-top VO ω of Q†. In the following, we discuss the case of ω consisting of a
single tree; otherwise, we apply the preprocessing stage to each tree in ω.

Given an access-top VO ω, the function τ(ω) in Figure 3 returns a view tree constructed
from ω. The function traverses ω bottom-up and creates at each variable X, a view VX

defined over the join of the child views of X. The schema of VX consists of X and the
dependency set of X (Line 3). This view allows to efficiently enumerate the X-values given a
tuple of values for the variables in the dependency set. If X has siblings, the function creates
an additional view V ′

X on top of VX whose purpose is to aggregate away (or marginalise out)
X from VX (Line 5). This view allows to efficiently maintain the ancestor views of VX under
updates to the views created for the siblings of X.

The time to construct the view tree τ(ω) is dominated by the time to materialise the
view VX for each variable X. The auxiliary view V ′

X above VX can be materialised by
marginalising out X in one scan over VX . Each view VX can be materialised in O(Nw) time,
where w = ρ∗

QX
({X ∪ depω(X)}). The definition of the static width of ω implies that the

view tree τ(ω) can be constructed in O(Nw(ω)) time. By choosing a VO whose static width
is w(Q), the preprocessing time of our approach becomes O(Nw(Q)), as stated in Theorem 8.

The next example demonstrates the construction of a view tree for a CQAP0 query.

▶ Example 9. Figure 4 shows the hypergraphs of the query Q(B, C, D, E|A) = R(A, B, C),
S(A, B, D), T (A, E) and its fracture Q†(B, C, D, E|A1, A2) = R(A1, B, C), S(A1, B, D),
T (A2, E). The fracture has two connected components: Q1(B, C, D|A1) = R(A1, B, C),
S(A1, B, D) and Q2(E|A2) = T (A2, E). Figure 5 depicts an access-top VO (left) for Q1
and its corresponding view tree (middle). The VO has static width 1. Each variable in
the VO is mapped to a view in the view tree, e.g., B is mapped to VB(A1, B), where
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A

B E

C D
T (A, E)

R(A, B, C) S(A, B, D)

A1

B

C D

R(A1, B, C) S(A1, B, D)

A2

E

T (A2, E)

Figure 4 (Left) Hypergraph of the two queries with the same body but different access patterns,
as used in Examples 9 and 10; (middle and right) hypergraph of their fractures.

dep(A1) = ∅
dep(B) = {A1}

dep(C) = {A1, B}
dep(D) = {A1, B}

A1

B

C D

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

R(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

S(A1, B, D)

δVA1 (a)

δVB(a, b)

δV ′
C(a, b)

δVC(a, b, c)

δR(a, b, c)

V ′
D(a, b)

VD(A1, B, D)

S(A1, B, D)

Figure 5 (Left) Access-top VO for Q1(B, C, D|A1) = R(A1, B, C), S(A1, B, D); (middle) the
view tree constructed from the VO; (right) the delta view tree under a single-tuple update to R.

{B, A1} = {B} ∪ dep(B). The views V ′
C and V ′

D are auxiliary views. The views V ′
C , V ′

D, and
VA1 marginalise out the variables C, D and respectively B from their child views. The view
VB is the intersection of V ′

C and V ′
D. Hence, all views can be computed in O(N) time. Since

the query fracture is acyclic, the view tree does not contain indicator projections.
The only access-top VO for the connected component Q2 of Q† is the top-down path

A2 −E −T (A2, E). The views mapped to A2 and E are VA2(A2) and respectively VE(A2, E).
They can obviously be computed in O(N) time. ⌟

The next example considers a CQAP1 whose preprocessing time is quadratic.

▶ Example 10. Consider the CQAP1 Q(E, D|A, C) = R(A, B, C), S(A, B, D), T (A, E) and
its fracture Q†(E, D|A1, A2, C) = R(A1, B, C), S(A1, B, D), T (A2, E). The fracture has the
two connected components Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D) and Q2(E|A2) =
T (A2, E). The hypergraphs (Figure 4) of Q and its fracture are the same as for the query in
Example 9. Figure 6 depicts an access-top VO (left) for Q1 and its corresponding view tree
(middle). The VO has static width 2. The view VB joins the relations R and S, which takes
O(N2) time. The views VD, VC , and VA are constructed from VB by marginalising out one
variable at a time. Hence, the view tree construction takes O(N2) time. The view tree for
Q2 is the same as in Example 9 and can be constructed in linear time. ⌟

Finally, we exemplify the construction of a view tree for a cyclic query.

▶ Example 11. Figure 2 depicts a VO and the view tree constructed from it for the triangle
CQAP query Q(B, C|A) = R(A, B), S(B, C), T (C, A) from Example 3. The view VC joins
the relations R and S and the indicator projection IA,BR, which can be computed in O(N 3

2 )
time using a worst-case optimal join algorithm. The view VB can be computed in linear
time by looking up each tuple from V ′

C in R. The views V ′
C and VA are constructed by

marginalising out one variable at a time in time O(N 3
2 ) and O(N) time, respectively. Hence,

the view tree construction takes O(N 3
2 ) time. ⌟
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dep(A1) = ∅
dep(C) = {A1}

dep(D) = {A1, C}
dep(B) = {A1, C, D}

A1

C

D

B

R(A1, B, C) S(A1, B, D)

VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

R(A1, B, C) S(A1, B, D)

δVA1 (a)

δVC(a, c)

δVD(a, c, D)

δVB(a, b, c, D)

δR(a, b, c) S(a, b, D)

Figure 6 (Left) Access-top VO for Q1(B, D|A1, C) = R(A1, B, C), S(A1, B, D); (middle) the
view tree corresponding to the VO; (right) the delta view tree under a single-tuple update to R.

4.2 Enumeration
The view trees constructed by the function τ for any access-top VO for Q† allow for constant-
delay enumeration of the tuples in Q(O|i) given any tuple i over the input variables I.

Assume that ωi is a tree in the forest ω for which τ(ωi) constructs the view tree Ti, for
i ∈ [n]. Let Qi(Oi|Ii) with Oi = O ∩ vars(ωi) and Ii = I† ∩ vars(ωi) be the CQAP that
joins the atoms at the leaves of Ti. We first explain how to enumerate the tuples in Qi(Oi | i)
from Ti with constant delay, given an input tuple i over Ii. We traverse the view tree Ti in
preorder and execute at each view VX the following steps. In case X ∈ Ii, we check whether
the projection of i onto the schema of VX is in VX . If not, the query output is empty and we
stop. Otherwise, we continue with the preorder traversal. In case X ∈ Oi, we retrieve in
constant time the first X-value in VX given that the values over the variables in the root path
of X are already fixed to constants. After all views are visited once, we have constructed
the first complete output tuple and report it. Then, we iterate with constant delay over the
remaining distinct X-values in the last visited view VX . For each distinct X-value, we obtain
a new tuple and report it. After all X-values in VX are exhausted, we backtrack.

Assume now that we have a procedure that enumerates the tuples in Qi(Oi | ii) for any
tuple ii over Ii with constant delay. Consider a tuple i over the input variables I of Q. It
holds Q(O|i) = ×i∈[n]Qi(Oi|ii) where ii[X ′] = i[X] if X = X ′ or X is replaced by X ′ when
constructing the fracture of Q. We can enumerate the tuples in Q(O | i) with constant delay
by nesting the enumeration procedures for Q1(O1 | i1), . . . , Qn(On | in).

▶ Example 12. Consider the query Q(B, C, D, E|A) from Example 9 and the two connected
components Q1(B, C, D|A1) and Q2(E|A2) of its fracture. Figure 5 (middle) depicts the
view tree for Q1. Given an A1-value a, we can use this view tree to enumerate the distinct
tuples in Q1(B, C, D|a) with constant delay. We first check if a is included in the view VA1 .
If not, Q1(B, C, D|a) must be empty and we stop. Otherwise, we retrieve the first B-value
b paired with a in VB, the first C-value c paired with (a, b) in VC , and the first D-value d

paired with (a, b) in VD. Thus, we obtain in constant time the first output tuple (b, c, d) in
Q1(B, C, D|a) and report it. Then, we iterate over the remaining distinct D-values paired
with (a, b) in VD and report for each such D-value d′, a new tuple (b, c, d′). After all D-values
are exhausted, we retrieve the next distinct C-value paired with (a, b) in VC and restart the
iteration over the distinct D-values paired with (a, b) in VD, and so on. Overall, we construct
each distinct tuple in Q1(B, C, D|a) in constant time after the previous one is constructed.

Assume now that we have constant-delay enumeration procedures for the tuples in
Q1(B, C, D|a) and the tuples in Q2(E|a) for any A-value a. We can enumerate with
constant delay the tuples in Q(B, C, D, E|a) as follows. We ask for the first tuple (b, c, d) in
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Q1(B, C, D|a) and then iterate over the distinct E-values in Q2(E|a). For each such E-value
e, we report the tuple (b, c, d, e). Then, we ask for the next tuple in Q1(B, C, D|a) and restart
the enumeration over the tuples in Q2(E|a), and so on. ⌟

4.3 Updates
We now explain how to update the view trees constructed by the function τ in Figure 3.
Consider a single-tuple update δR = {x → m} to an input relation R; m is positive in case
of insertion and negative in case of deletion. We first update each view tree that has an
atom R(X ) at a leaf: We update each view on the path from that leaf to the root of the
view tree using the classical delta rules [9]. The update δR may affect indicator projections
IZR. A new single-tuple update δIZR = {x[Z] → k} to IZR is triggered in the following
two cases. If δR is an insertion and x[Z] is a value not already in πZR, then the new update
is triggered with k = 1. If δR is a deletion and πZR does not contain x[Z] after applying
the update to R, then the new update is triggered with k = −1. This update is propagated
up to the root of each view tree, like for δR.

Recall that the time to compute a view VX is O(Nw), where w = ρ∗
QX

({X} ∪ depω(X)).
In case of an update to a relation or indicator R over schema Y , the variables in Y are set to
constants. The time to update VX is then O(Nδ), where δ = ρ∗

QX
(({X} ∪ depω(X)) \ Y).

Assuming that the dynamic width of ω is δ(Q), we conclude that the update time of our
approach is O(Nδ(Q)), as stated in Theorem 8.

▶ Example 13. Figure 5 (right) shows the delta view tree for the view tree to the left under
a single-tuple update δR(a, b, c) to R. We update the relation R(A, B, C) with δR(a, b, c)
in constant time. The ancestor views of δR (in blue) are the deltas of the corresponding
views, computed by propagating δR from the leaf to the root. They can also be effected
in constant time. Overall, maintaining the view tree under a single-tuple update to any
relation takes O(1) time.

Consider now the delta view tree in Figure 6 (right) obtained from the view tree to its left
under the single-tuple update δR(a, b, c). We update VB(A1, B, C, D) with δVB(a, b, c, D) =
δR(a, b, c), S(a, b, D) in O(N) time, since there are at most N D-values paired with (a, b) in
S. We then update the views VD, VC , and VA1 in O(1) time. Updates to S are handled
analogously. Overall, maintaining the view tree under a single-tuple update to any relation
takes O(N) time. ⌟

4.4 Discussion
So far in this section, we explained how our approach works. We conclude with a high-level
discussion on key decisions behind our approach.

1. Variable orders. Our approach can be rephrased to use tree decompositions [16]
instead of VOs, since they are different syntaxes for the same query decomposition class [31].
Indeed, the set consisting of a variable and its dependency set in a VO can be interpreted as
a bag of a tree decomposition whose edges between bags reflect those between the variables
in the VO. Variable orders are more natural for our algorithms for constructing view trees
and for enumeration as well as worst-case optimal join algorithms such as the LeapFrog
TrieJoin [33] and their use for constructing factorized representations of query results [31]:
These algorithms proceed one variable at a time and not one bag of variables at a time.
VO-based algorithms express more naturally computation by variable elimination.

2. Access-top VOs. Access-top VOs can have higher static and dynamic widths
than arbitrary VOs. However, they are needed to attain the constant-delay enumeration in
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Theorem 8, as explained next. The maintenance procedure for view trees ensures that each
view is calibrated2 with respect to all of its descendant views and relations, since the updates
are propagated bottom-up from the relations to the top view. Since the views constructed for
the input variables are above all other views in a view tree constructed from an access-top
VO, these views are calibrated. For a given tuple of values over the input variables, the
calibration of these views guarantees that if they do not agree with this tuple, then there
is no output tuple associated with the input tuple. For constant-delay enumeration, we
follow a top-down traversal of the view tree and use the constant-time lookup of the hash
maps implementing the views. Furthermore, since the output variables are above the bound
variables in the VO, tuples of values over the output variables can be retrieved from views
whose schemas do not contain bound variables. Hence, we can enumerate the distinct tuples
over the output variables for a given tuple over the input variables.

In case we would have used an arbitrary (and not access-top) VO, then the input variables
may be anywhere in the VO; in particular, there may be views above the relations with the
input variables that do not have input variables. On an enumeration request, the values
given to the input variables act as selection conditions on the relations and may require
the calibration of the views on top before the enumeration starts; this calibration may
be as expensive as computing the query. Otherwise, we incur a non-constant cost for the
enumeration of each output tuple. Either way, the enumeration delay may not be constant.

3. Lazy approach using residual queries. A simple CQAP evaluation approach is
the lazy approach. On updates, the lazy approach just updates the input relations. On
enumeration, where each input variable is given a value, it computes the residual query
obtained by setting the input variables to the given values. The enumeration of the tuples in
the output of a residual query cannot guarantee constant delay, since the parts of the input
relations, which satisfy the selection conditions on the input variables, are not necessarily
calibrated, and the calibration may take as much time as computing the residual query.

4. Replacing each occurrence of an input variable by a fresh variable. Although
this query rewriting removes the joins on the input variables, it does not affect the correctness
of query evaluation. For enumeration, all fresh variables are fixed to given values. In access-
top VOs, these variables are above the other variables and are in views that are calibrated
with respect to the relations in their respective connected component of the rewritten query.
We can then check whether all view trees satisfy the assignment of values to the input values.
If a view tree fails, then the query output is empty for the values given to the input variables.

5. Query fractures. The query rewriting in the previous discussion point is only the first
step of query fracturing. The second step merges all fresh variables for an input variable into
one variable in case they are in the same connected component. This does not affect correctness
but may affect the complexity, as exemplified next. Consider the triangle query in Example 11:
Q(B, C|A) = R(A, B), S(B, C), T (C, A). If we were to replace A by two fresh variables A1
and A2, then the rewritten query would be: Q′(B, C|A1, A2) = R(A1, B), S(B, C), T (C, A2).
It still has one connected component. An access-top VO for Q′ is A1 − A2 − B − C (A1 and
A2 may be swapped, same for B and C). The static width of Q′ is 2. Yet by merging back
A1 and A2, we obtain Q, which admits the access-top VO A − B − C and static width 3/2
(same width can be obtained if B and C are swapped), as in Example 11.

2 A relation R is calibrated with respect to other relations in a query Q if each tuple in R participates to
at least one tuple in the output of Q.
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5 A Dichotomy for CQAPs

The following dichotomy states that the queries in CQAP0 are precisely those CQAPs that
can be evaluated with constant update time and enumeration delay.

▶ Theorem 14. Let any CQAP query Q and database of size N .
If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration delay, and
O(1) update time for single-tuple updates.
If Q is not in CQAP0 and has no repeating relation symbols, then there is no algorithm
that computes Q with arbitrary preprocessing time, O(N 1

2 −γ) enumeration delay, and
O(N 1

2 −γ) amortised update time, for any γ > 0, unless the OMv conjecture fails.
The hardness result in Theorem 14 is based on the following OMv problem:

▶ Definition 15 (Online Matrix-Vector Multiplication (OMv) [17]). We are given an n × n

Boolean matrix M and receive n Boolean column vectors v1, . . . , vn of size n, one by one;
after seeing each vector vi, we output the product Mvi before we see the next vector.

It is strongly believed that the OMv problem cannot be solved in subcubic time.

▶ Conjecture 16 (OMv Conjecture, Theorem 2.4 [17]). For any γ > 0, there is no algorithm
that solves the OMv problem in time O(n3−γ).

Queries in CQAP0 have dynamic width 0 and static width 1 [22]. Our approach from
Section 4 achieves linear preprocessing time, constant update time and enumeration delay
for such queries (Theorem 8), so it is optimal for CQAP0.

The smallest queries not included in CQAP0 are: Q1(O|·) = R(A), S(A, B), T (B) with
O ⊆ {A, B}; Q2(A|·) = R(A, B), S(B); Q3(·|A) = R(A, B), S(B); and Q4(B|A) = R(A, B),
S(B). Each query is equal to its fracture. Query Q1 is not hierarchical. Q2 is not free-
dominant. Q3 and Q4 are not input-dominant. Prior work showed that there is no algorithm
that achieves constant update time and enumeration delay for Q1 and Q2, unless the OMv
conjecture fails [7]. To prove the hardness statement in Theorem 14, we show that this
negative result also holds for Q3 and Q4. Then, given an arbitrary CQAP Q that is not in
CQAP0, we reduce the evaluation of one of the four queries above to the evaluation of Q.

6 Trade-Offs for CQAPs with Hierarchical Fractures

For CQAPs with hierarchical fractures, the complexities in Theorem 8 can be parameterised
to uncover trade-offs between preprocessing, update, and enumeration.

▶ Theorem 17. Let any CQAP Q with static width w and dynamic width δ, a database
of size N , and ϵ ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits O(N1+(w−1)ϵ)
preprocessing time, O(N1−ϵ) enumeration delay, and O(Nδϵ) amortised update time for
single-tuple updates.

This trade-off continuum can be obtained using one algorithm parameterised by ϵ. This
algorithm either recovers or has lower complexity than prior approaches. Using ϵ = 1, we
recover the complexities in Theorem 8 and therefore also the constant update time and delay
for queries in CQAP0 in Theorem 14.

Theorem 17 can be refined for CQAP1, since δ = 1 and w ≤ 2 for queries in this class.

▶ Corollary 18. (Theorem 17). Let any query in CQAP1, a database of size N , and ϵ ∈
[0, 1]. Then Q admits O(N1+ϵ) preprocessing time, O(N1−ϵ) enumeration delay, and O(N ϵ)
amortised update time for single-tuple updates.



A. Kara, M. Nikolic, D. Olteanu, and H. Zhang 18:15

For ϵ = 0.5, the update time and delay for queries in CQAP1 match the lower bound in
Theorem 14 for all queries outside CQAP0. This makes our approach weakly Pareto optimal
for CQAP1, as lowering both the update time and delay would violate the OMv conjecture.

Our algorithm has two core ideas. (For lack of space, we defer the details to the extended
technical report [22].) First, we partition the input relations into heavy and light parts
based on the degrees of the values. This transforms a query over the input relations into a
union of queries over heavy and light relation parts. Second, we employ different evaluation
strategies for different heavy-light combinations of parts of the input relations. This allows
us to confine the worst-case behaviour caused by high-degree values in the database during
query evaluation.

We construct a set of VOs for the hierarchical fracture of a given CQAP. Each VO
represents a different evaluation strategy over heavy and light relation parts. For VOs
over light relation parts, we follow the general approach from Section 4 and construct view
trees from access-top VOs. For VOs involving heavy relation parts, we construct view trees
from VOs that are not access-top, thus yielding non-constant enumeration delay but better
preprocessing and update times. This trade-off is controlled by the parameter ϵ.

Enumerating distinct tuples from the constructed view trees poses two challenges. First,
these view trees may encode overlapping subsets of the query result. To enumerate only
distinct tuples from these view trees, we use the union algorithm [14] and view tree iterators,
as in prior work [23]. Second, for views trees built from VOs that are not access-top, the
enumeration approach from Section 4 would report the values of bound variables before the
values of free variables or the values of output variables before setting the values of input
variables. To resolve this issue, we instantiate a view tree iterator for each value of the
variable that violates the free-dominance or input-dominance condition. We then use the
union algorithm to report only distinct tuples over the output variables. By partitioning
input relations, we ensure that the number of instantiated iterators depends on ϵ. For view
trees built from access-top VOs, we use the enumeration approach from Section 4.

6.1 Data Partitioning
We partition relations based on the frequencies of their values. For a database D, relation
R ∈ D over schema X , schema S ⊂ X , and threshold θ, the pair (RS )H , RS )L) is a partition
of R on S with threshold θ if it satisfies the conditions:

(union) R(x) = RS )H(x) + RS )L(x) for x ∈ Dom(X )
(domain partition) πSRS )H ∩ πSRS )L = ∅

(heavy part) ∀t ∈ πSRS )H , ∃K ∈ D: |σS=tK| ≥ 1
2 θ

(light part) ∀t ∈ πSRS )L and ∀K ∈ D: |σS=tK| < 3
2 θ

We call (RS )H , RS )L) a strict partition of R on S with threshold θ if it satisfies the union and
domain partition conditions and the strict versions of the heavy and light part conditions:

(strict heavy part) ∀t ∈ πSRS )H , ∃K ∈ D: |σS=tK| ≥ θ

(strict light part) ∀t ∈ πSRS )L and ∀K ∈ D: |σS=tK| < θ

The relation RS )H is called heavy, and the relation RS )L is called light on the partition
key S, as they consist of all S-tuples that are heavy and respectively light in R. Due
to the domain partition, the relations RS )H and RS )L are disjoint. For |D| = N and a
strict partition (RS )H , RS )L) of R on S with threshold θ = N ϵ for ϵ ∈ [0, 1], we have: (1)
∀t ∈ πSRS )L : |σS=tRS )L| < θ = N ϵ; and (2) |πSRS )H | ≤ N

θ = N1−ϵ. The first bound
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follows from the strict light part condition. In the second bound, πSRS )H refers to the tuples
over schema S with high degrees in some relation in the database. The database can contain
at most N

θ such tuples; otherwise, the database size would exceed N .
Disjoint relation parts can be further partitioned independently of each other on different

partition keys. We write RS1 )s1,...,Sn )sn to denote the relation part obtained after partitioning
RS1 )s1,...,Sn−1 )sn−1 on Sn, where si ∈ {H, L} for i ∈ [n]. The domain of RS1 )s1,...,Sn )sn is
the intersection of the domains of RSi )si , for i ∈ [n]. We refer to S1 ) s1, . . . , Sn ) sn as a
heavy-light signature for R. Consider for instance a relation R with schema (A, B, C). One
possible partition of R consists of the relation parts RA )L, RA )H,AB )L, and RA )H,AB )H .
The union of these relation parts constitutes the relation R.

6.2 Preprocessing
The preprocessing has two steps. First, we construct a set of VOs corresponding to the
different evaluation strategies over the heavy and light relation parts. Second, we build a
view tree from each such VO using the function τ from the general case (Figure 3).

We next describe the construction of a set of VOs from a canonical VO ω of a hierarchical
CQAP Q(O|I). Without loss of generality, we assume that ω is a tree; in case ω is a forest,
the reasoning below applies independently to each tree in the forest. The construction
proceeds recursively on the structure of ω and forms the query QX(OX |IX) at each variable
X. The query QX is the join of the atoms in ωX , the set OX consists of the output variables
in ωX , and the set IX consists of the input variables in ωX and all ancestor variables along
the path from X to the root of ω. The next step analyses the query QX .

If QX is in CQAP0, we turn ωX into an access-top VO for QX by pulling the free variables
above the bound variables and the input variables above the output variables. For queries in
CQAP0, this restructuring does not increase their static width.

If QX is not in CQAP0, then ωX contains a bound variable that dominates a free variable
or an output variable that dominates an input variable. If X does not violate either of these
conditions, we recur on each subtree and combine the constructed VOs. Otherwise, we create
two sets of VOs, which encode different evaluation strategies for different parts of the result
of QX . Let key be the set of variables on the path from X to the root of the canonical VO
for Q, including X. For the first set of VOs, each leaf atom Rsig(X ) below X is replaced
by Rsig,key→H(X ) before recurring on each subtree, denoting that the evaluation of QX is
over relations parts that are heavy on key. For the second set of VOs, we turn ωX into an
access-top VO over relations parts that are light on key; this restructuring of the VO may
increase its static width.

We construct a view tree for each VO formed in the previous step. For each view tree,
we strict partition the input relations based on their heavy-light signature and compute
the queries defining the views. We refer to this step as view tree materialisation. The
view trees constructed for the evaluation of queries in CQAP0 or over heavy relation parts
follow canonical VOs, meaning that they can be materialised in linear time. The view trees
constructed for the evaluation of queries over light relation parts follow access-top VOs.
Using the degree constraints in the input relations, each such view trees can be materialised
in O(N1+(w−1)ϵ), where w is the static width of the query.

▶ Example 19. We explain the construction of the views tree for the connected component
from Figure 4 (middle) corresponding to the query Q1(D|A1, C) = R(A1, B, C), S(A1, B, D).
In the canonical VO of this query, shown in Figure 5 (left), the bound variable B dominates
the free variables C and D. We strictly partition the relations R and S on (A1, B) with
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VA1 (A1)

VC(A1, C)

VD(A1, C, D)

VB(A1, B, C, D)

RA1B )L(A1, B, C) SA1B )L(A1, B, D)

VA1 (A1)

VB(A1, B)

V ′
C(A1, B)

VC(A1, B, C)

RA1B )H(A1, B, C)

V ′
D(A1, B)

VD(A1, B, D)

SA1B )H(A1, B, D)

Figure 7 View trees constructed for Q1(D|A1, C) = R(A1, B, C), S(A1, B, D) from Example 19
using the VOs: (left) A1 − C − D − B − {RA1B )L(A1, B, C), SA1B )L(A1, B, D)} and (right) A1 −
B − {C − RA1B )H(A1, B, C), D − SA1B )H(A1, B, D)}.

threshold N ϵ, where N is the database size. To evaluate the join over the light relation parts,
we turn the subtree in the canonical VO rooted at B into an access-top VO and construct a
view tree following this new VO, see Figure 7 (left). We compute the view VB(A1, B, C, D)
in time O(N1+ϵ): For each (a, b, c) in the light part RA1B )L(A1, B, C) of R, we fetch the
D-values in SA1B )L(A1, B, D) that are paired with (a, b). The iteration in RA1B )L(A1, B, C)
takes O(N) time and for each (a, b), there are at most N ϵ D-values in SA1B )L(A1, B, D).
The views VD, VC , and VA result from VB by marginalising out one variable at a time.
Overall, this takes O(N1+ϵ) time.

To evaluate the join over the heavy parts of R and S, we construct a view tree following
the canonical VO (Figure 7 right). The VO and view tree are the same as in Figure 4, except
that the leaves are the heavy parts of R and S. The view tree can be materialised in O(N)
time, cf. Example 9. Overall, the two view trees can be computed in O(N1+ϵ) time. ⌟

6.3 Updates

A single-tuple update to an input relation may cause changes in several view trees constructed
for a given hierarchical CQAP. If the input relation is partitioned, we first identify which
part of the relation is affected by the update. We then propagate the update in each view
tree containing the affected relation part, as discussed in Section 4.

▶ Example 20. We consider the maintenance of the view trees from Figure 7 under a
single-tuple update δR(a, b, c) to R. The update affects the heavy part RA1B )H if (a, b) ∈
πA1,BRA1B )H ; otherwise, it affects the light part RA1B )L. For the former, we propagate
the update from RA1B )H to the root. For each view on this path, we compute its delta
query and update the view in constant time for fixed (a, b, c). For the latter, we compute
the delta δVB(a, b, c, D) = δRA1B )L(a, b, c), SA1B )L(a, b, D) in O(N ϵ) time because there
are at most N ϵ D-values paired with (a, b) in SA1B )L. We then update VD(a, c, D) with
δVD(a, c, D) = δVB(a, b, c, D) in O(N ϵ) time and update the views VC(A1, C) and VA1(A1)
in constant time. The case of single-tuple updates to S is analogous. Overall, maintaining
the two view trees under a single-tuple update to any input relation takes O(N ϵ) time. ⌟

An update may change the degree of values over a partition key from light to heavy or
vice versa. In such cases, we need to rebalance the partitioning and possibly recompute some
views. Although such rebalancing steps may take time more than O(Nδϵ), they happen
periodically and their amortised cost remains the same as for a single-tuple update.

ICDT 2023
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7 Related Work

Our work is the first to investigate the dynamic evaluation for queries with access patterns.
Free Access Patterns. Our notion of queries with free access patterns corresponds

to parameterized queries [1]. These queries have selection conditions that set variables to
parameter values to be supplied at query time. Prior work closest in spirit to ours investigates
the space-delay trade-off for the static evaluation of full conjunctive queries with free access
patterns [11]. It constructs a succinct representation of the query output, from which the
tuples that conform with value bindings of the input variables can be enumerated. It does
not support queries with projection nor dynamic evaluation. Follow-up work considers the
static evaluation for Boolean conjunctive queries with access patterns [10]. Further works on
queries with access patterns [15, 34, 12, 5, 6] consider the setting where input relations have
input and output variables and there is no restriction on whether they are bound or free;
also, a variable may be input in a relation and output in another. This poses the challenge
of whether the query can be answered under specific access restrictions [28, 29, 27].

Dynamic evaluation. Our work generalises the dichotomy for q-hierarchical queries
under updates [7] and the complexity trade-offs for queries under updates [19, 20, 21]. The
IVM approaches Dynamic Yannakakis [18] and F-IVM [30], which is implemented on top of
DBToaster [24], achieve (i) linear-time preprocessing, linear-time single-tuple updates, and
constant enumeration delay for free-connex acyclic queries; and (ii) linear-time preprocessing,
constant-time single-tuple updates, and constant enumeration delay for q-hierarchical queries.
Theorem 8 recovers these results by noting that the static and dynamic widths are: 1 and
respectively in {0, 1} for free-connex acyclic queries and 1 and respectively 0 for q-hierarchical
queries. We refer the reader to a comprehensive comparison [23] of dynamic query evaluation
techniques and how they are recovered by the trade-off [21] extended in our work.

Our CQAP0 dichotomy strictly generalises the one for q-hierarchical queries [7]: The
set of q-hierarchical queries is a strict subset of CQAP0, while there are hard patterns of
non-CQAP0 beyond those for non-q-hierarchical queries.

There are key technical differences between the prior framework for dynamic evaluation
trade-off [21] and ours: different data partitioning; new modular construction of view trees;
access-top variable orders; new iterators for view trees modelled on any variable order. We
create a set of variable orders that represent heavy/light evaluation strategies and then map
them to view trees. One advantage is a simpler complexity analysis for the views, since the
variables orders and their view trees share the same width measures.

Cutset optimisations. Cutset conditioning [32] and cutset sampling [8] are used for
efficient exact and approximate inference in Bayesian networks. The idea is to choose a cutset,
which is a subset of variables, such that conditioning on the variables in the cutset, i.e.,
instantiating them with possible values, yields a network with a small treewidth that allows
exact inference. The set of input variables of a CQAP can be seen as a given cutset, while
fixing the input variables to given values is conditioning. Query fracturing, as introduced
in our work, is a query rewriting technique that does not have a counterpart in cutset
optimisations in AI.

8 Conclusion

This paper introduces a fully dynamic evaluation approach for conjunctive queries with free
access patterns. It gives a syntactic characterisation of those queries that admit constant-time
update and delay and further investigates the trade-off between preprocessing time, update
time, and enumeration delay for such queries.
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