
Structured Sum-Product Networks

George Chichirim
Keble College

University of Oxford

Supervisor: Prof. Dan Olteanu

3rd Year Project Report
Honour School of Computer Science - Part B

Trinity 2020

Abstract

This thesis introduces a new class of relational Sum-Product Network mod-
els learned over multi-relational data called Structured Sum-Product Networks,
or SSPNs for short. It puts forward a novel approach to computing the net-
work structure and parameters by exploiting the semantics and structure of the
underlying multi-relational databases, as conveyed by the join dependencies of
the data, which may significantly improve the construction time and accuracy
of such models. The thesis details the design and implementation of a fully re-
lational system for managing SSPNs, and puts forward algorithms that encode
SSPN learning and inference as plain SQL queries. It also introduces a user-
friendly scripting language to aid the development of SSPN models. This thesis
is the first to investigate the structure-aware learning of deep generative models
that capture the joint distribution of the underlying multi-relational data. On
the MovieLens dataset, SSPNs have better accuracy in terms of MAE and RMSE
metrics than 8/10 and 9/10, respectively, best known discriminative models for
this task. SSPNs have also significantly better accuracy results than SPFlow,
a state-of-the-art system for SPNs. Finally, the SSPN system is three orders of
magnitude faster than the SPFlow system for model construction/learning and
has two orders of magnitude better throughput for inference queries, where the
throughput measure is computed as inference time per network size.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Dan
Olteanu for his support throughout the project, for the many productive meetings
of brainstorming, and for the valuable feedback he has given during this year.

I would also like to thank Fabian Peternek for participating in all our discus-
sions, and for helping with the implementation of the scripting language parser.
Moreover, I would like to thank Maximilian Schleich for his suggestions and feed-
back for this research project.

Finally, I would like to thank my family for their continuous love and support,
and for always encouraging me to do my best, ever since I can remember.

i

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Why SPNs? . 1
1.1.2 Why Relational Data? . 2

1.2 Contributions . 3

2 Preliminaries 6
2.1 Factorised Databases . 6

2.1.1 Factorised Data Representations 6
2.1.2 Factorised Joins Over Multi-Relational Databases 8
2.1.3 Size Bounds of Factorised Joins 10

2.2 Sum-Product Networks . 13
2.2.1 Network Polynomials . 14
2.2.2 Finite State Sum-Product Networks 15
2.2.3 Generalised Sum-Product Networks 18

3 Structured Sum-Product Networks 20
3.1 Structure Learning . 21
3.2 Weights Learning . 25

3.2.1 Overview of Existing Methods 25
3.2.2 Computing Weights for SSPNs 27

3.3 Distribution Parameters Learning 28
3.4 Relational SSPNs . 28
3.5 Maintaining SSPNs under Updates 32

3.5.1 Network Structure and Weights Maintenance 32
3.5.2 Distribution Parameters Maintenance 32

3.6 Discussion . 33

4 Scripting Language for SSPNs Modelling 35

ii

5 Experiments 39
5.1 Summary of Findings . 39
5.2 Evaluation Metric . 40
5.3 Competitor Algorithms . 40
5.4 Experimental Setup . 41
5.5 Experimental Results . 41
5.6 Model Accuracy . 42
5.7 Runtime Performance . 46
5.8 Network Size . 46
5.9 SPN Competitor . 47

6 Conclusion 49
6.1 Summary . 49
6.2 Future Work . 50

iii

Chapter 1

Introduction

In this thesis, we investigate Sum-Product Networks (SPNs) and the problem of
learning both their structure and parameters over multi-relational databases. We
introduce a new class of structure-aware deep probabilistic models which we will
call Structured Sum-Product Networks, or SSPNs for short. In contrast to
standard SPNs, SSPNs are modelled on the relational structure of the underlying
training dataset. This can lead to smaller SPNs that can be trained faster and
can have higher accuracy. Moreover, we create a fully relational framework
through which we can model, learn, and use SSPNs to answer inference queries.

1.1 Motivation

1.1.1 Why SPNs?

Probabilistic Graphical Models (PGMs) [16] can compactly represent many com-
plex distributions, but probabilistic inference is generally intractable for them
[32]. Deep architectures with many layer of hidden variables are expressive too,
but again inference in them is difficult [4].

Sum-Product Networks were introduced by Poon and Domingos [30] as both
tractable probabilistic models and deep architectures. They are in fact deep
networks with probability distributions as leaves, and products or weighted sums
of sub-SPNs as inner nodes. While these restrictions limit their expressiveness,
they allow for clear semantics in the sense that sub-SPNs rooted at each node
compute a joint probability distribution over the variables from their scope.

The most important advantage of SPNs over other types of PGMs, including
Bayesian Networks (BNs) and Markov Networks (MNs), is that exact inference

1

CHAPTER 1. INTRODUCTION 2

can be achieved in time linear in the size of the network. In contrast, in both
BNs and MNs, probabilistic inference is #P-complete [32], and therefore it needs
to be approximated in order to ensure tractability. This advantage of SPNs has
generated a lot of interest since inference is often a core task for both structure
and parameter learning. SPNs have actually achieved impressive results in image
completion [30, 8, 27], classification [9], and speech and language modelling [28, 5].

1.1.2 Why Relational Data?

According to a 2017 Kaggle survey on the state of data science and machine
learning [15], the majority of practical data science tasks involve relational data:
in Retail, 86% of used data is relational; in Insurance, it is 83%; in Marketing,
it is 82%; and in Finance it is 77%. Furthermore, relational data benefit from
the investment of many human hours for cleaning and normalization and are rich
with knowledge of the underlying domain modelled using database constraints.

However, as Schleich et al. [33] pointed out, the current state of affairs in
building ML models over relational data largely ignores the structure and rich
semantics readily available in relational databases.

By far the most common approach to learning over relational data is to use
two distinct systems: the data systems for managing the training dataset and
the ML library for model training. The data system first computes the training
dataset as the result of a feature extraction query and exports it as one table. The
ML library then imports the training dataset in its own format and learns the
desired model. This approach is called data structure-agnostic and is depicted
with red in Figure 1.1. The key disadvantage of this is the non-trivial time
spent on materialising, exporting and importing the training dataset, which is
commonly orders of magnitude larger than the input database.

An alternative approach is to migrate the statistical package into the database
system space. Here, each machine learning task is implemented as a distinct user-
defined aggregate function (UDAF) inside the database system. This allows for
better runtime performance since it does not need to export and import the
(usually large) training dataset. A prime example of this approach is MADLib
[13] that extends PostgreSQL with a comprehensive library of machine learning
UDAFs. Furthermore, the UDAFs can be pushed into the feature extraction query
exploiting the structure of the data, thus reducing the complexity and drastically
improving the runtime performance of the learning process. This approach is
called data structure-aware and is depicted with green in Figure 1.1. It first

CHAPTER 1. INTRODUCTION 3

Feature Extraction
Query DB

materialized output

ML Tool ~θ

Model

Model ReformulationBatch of Queries

Query Batch
Evaluation

Optimization

Figure 1.1: Taken from [33]. Relational structure-aware (green) versus relational
structure-agnostic (red) learning.

compiles the model specification into a set of aggregates (model reformulation).
Data dependencies such as functional dependencies can be used to reparametrise
the model, so a model over a smaller set of functionally determining features is
learned instead and then mapped back to the original model. Join dependencies,
such as those prevalent in feature extraction queries that put together several
input tables, are exploited to avoid redundancy in the representation of join
results and push the model aggregates past joins. The model aggregates over the
feature extraction query define a batch of queries. The result of a query batch is
then the input to an optimizer such as a gradient descent method that iterates
until the model parameters converge.

1.2 Contributions

So far, to the best of our knowledge, no work considered structure-aware learning
of deep probabilistic models such as Sum-Product Networks. There is available
expertise in the AI and DB communities on either SPNs or structure-aware com-
putation, but not both [34, 2, 3]. The contributions of this thesis can be divided
into two major parts.

Firstly, we introduce a new class of SPNs that we call Structure-aware (or
simply Structured) Sum-Product Networks. These models will succinctly and ac-
curately capture joint probability distributions learned from large multi-relational
databases and allow for tractable probability inference and efficient learning or-
ders of magnitude faster than what is possible with the current technology. The
key conjecture of this project is that the learning time and accuracy of such mod-
els can be drastically improved by exploiting the semantics and structure of the

CHAPTER 1. INTRODUCTION 4

underlying multi-relational database, including: domain expertise expressed as
logical rules, database dependencies and normal forms, human-added semantics
in the form of concept hierarchies, and feature extraction queries that construct
the training dataset from the input database.

SSPNs draw on a novel combination of prior work from the AI commu-
nity on Sum-Product Networks [30, 34], and from DB community on Factorised
Databases (FDBs) [25, 26], which are succinct lossless representations of relational
data. FDBs exploit laws of relational algebra, in particular the distributivity of
the Cartesian product over union that underlies algebraic factorisation, and data
together with computation sharing to reduce redundancy in the representation
and computation of query results [24].

SSPNs inherit the best of SPNs and FDBs. Like Sum-Product Networks,
SSPNs are representations of joint probability distributions learned from the in-
put data and support tractable inference. Like Factorised Databases, SSPNs
exploit the structure of the underlying relational data to achieve small sizes and
fast construction. Learning Sum-Product Networks is notoriously challenging,
with existing systems reporting significant runtimes for moderately small data
sizes. One reason for this is that they do not exploit the existing structure of
the underlying data and set out to re-discover it using expensive clustering and
independence testing [10].

The ability to learn deep models over relational data with less computing
resources than the state of the art can also significantly improve model accuracy.
Firstly, we can train SSPNs over larger amounts of relational data. It also means
that models can be quickly refreshed so they continue to represent accurately the
domain even in the presence of high throughput of new data evidence. It also
means that more models can be trained within the time budget allocated to train
one model using the existing technology, so that we can choose the one with the
highest accuracy.

Secondly, we introduce a fully relational system for modelling, learning, and
using SSPNs. Generally, SPNs can be realised in a multitude of ways. Our design
decision is to create SSPNs that are defined by the joins of several tables stored in
a relational DBMS. Learning and prediction can then happen purely relational.
There are tremendous benefits of this approach:

1. Since relational DBMSs are designed to deal with large tables means that
this approach can deal with truly large training datasets and learned SSPNs
that may not fit entirely in the main memory of a commodity machine.

CHAPTER 1. INTRODUCTION 5

2. The learned SSPNs can be made persistent to disk. This contrasts with all
existing approaches that represent SPNs in main memory as graphs that
are only kept for as long as prediction is performed and are discarded af-
terwards. Subsequent need of the SPNs means learning them again! Our
relational representation of the SSPNs can be seen as a relational normali-
sation of the graph representation of the SPN.

3. Prediction using SSPNs is mapped purely to relational queries. More impor-
tantly, learning SSPNs is also defined using relational queries. The overall
system is thus purely relational.

4. This approach is portable across DBMSs, since the relational queries are
given in a standard query language called SQL, which is supported by vir-
tually all major DBMSs. This means our approach is highly usable, adding
the fact that DBMSs are literally everywhere (e.g., SQLite is one of the
most used software libraries along with zlib, libpng, and libjpeg).

There is a price to pay for this high usability and scalability: One can imple-
ment an SPN-specific learning and prediction engine that would have lower foot-
print and higher runtime performance than a general-purpose relational DBMS.
Nevertheless, we consider that the benefits of our approach outweigh by a large
margin this shortcoming. In experiments we show that our approach achieves
better accuracy and is much faster than prior SPN systems.

Besides model storage and evaluation, we consider the problem of maintaining
SSPN models incrementally under changes (tuple insertions and deletions) to the
input database. We consider a novel approach that breaks down the construction
of the network into three components: the construction of the factorised join that
gives the structure of the network (structure estimation), the computation of the
weights on the children of a sum node (parameter estimation), and the computa-
tion of the probability distributions at the leaves of the network (pdf estimation).
We introduce algorithms that efficiently maintain all three components under
updates.

Last but not least, we introduce a user-friendly scripting language to aid the
development of SSPN models, from the preparation of the training dataset, to
the definition of the SSPN structure and probability distributions, and finally to
the inference (conditional and most probable explanation) queries over SSPNs.

Chapter 2

Preliminaries

2.1 Factorised Databases

Factorised Databases (FDB) were first introduced by Olteanu and Závodnỳ [25,
26]. In this section we will briefly explain them and present the results that will
make us understand better their contribution to this thesis.

The idea is to represent relations symbolically as relational algebra expressions
consisting of Unions, Cartesian Products, and singleton relations. Such represen-
tations are called factorised representations or f-representations, since they use
algebraic factorisation to nest products and unions, and hence express combina-
tions of values symbolically. Further compression can be achieved by introducing
symbolic references into the representations, so that repeated subexpressions can
be defined only once and be referred to several times. These kind of factorised
representations are called d-representations.

2.1.1 Factorised Data Representations

Definition 2.1. A factorised representation with definitions, or d-representation,
is a list of expressions pD1, ..., Dnq where eachDk is a relational algebra expression
over a schema Σk. An expression over schema Σ from above has one of the
following forms:

• H, representing the empty relation over Σ,

• xy, representing the relation consisting of the nullary tuple, if Σ “ H,

• xA : ay, representing the singleton relation with one tuple paq, if Σ “ tAu

and a P DompAq,

6

CHAPTER 2. PRELIMINARIES 7

• pE1 Y ... Y Enq, representing the union of the relations represented by Ei,
where each Ei is an expression over Σ,

• pE1 ˆ ... ˆ Enq, representing the Cartesian product of the relations repre-
sented by Ei, where each Ei is an expression over schema Σi such that Σ is
the disjoint union of all Σi,

• a reference ÒE to an expression E over Σ.

Any expression E that doesn’t contain references is an f-representation. We
write rrEss for the relation over schema Σ represented by the expression E over
Σ. The schema of a d-representation is the schema of its root expression D1.
Each expression Di can contain references to Dj only for j ą i, and it must be
referenced at least once if i ą 1.

Any d-representation D over schema Σ consisting of expressions D1, ..., Dn

represents a relation rrDss over Σ . For i from n to 1, we can define expression
Ei to be the expression Di with all references ÒDj (j ą i) replaced by Ej. E1 is
now an f-representation, called the traversal of D, equivalent to D, and therefore
representing the same relation rrDss. Moreover, any f-representation E is also a
d-representation (by definition).

Theorem 2.2. Factorised representations are a complete representation system
for relational data.

Proof. Any relation has at least one f-representation, the flat f-representation.
This is a (possibly empty) union of products of singletons, where each product
of singletons represents a distinct tuple in the relation.

Any f-representation has a parse tree whose internal nodes are unions and
products, and whose leaves are singletons or empty relations. Similarly, any d-
representation has a directed acyclic parse graph (the graph is acyclic due to the
restriction that each Di can contain a reference to Dj only for j ą i).

Example 2.3. Consider the relation Rn over schema tA1, ..., Anu whose tu-
ples are all binary sequences pa1, ..., anq with no two consecutive zeros. The
d-representation consisting of

D1,0 “ xA1 : 0y, D1,1 “ xA1 : 1y,

Dk,0 “
ÒDk´1,1 ˆ xAk : 0y, Dk,1 “ p

ÒDk´1,0 Y
ÒDk´1,1q ˆ xAk : 1y for k P 2, n,

CHAPTER 2. PRELIMINARIES 8

and root D “ ÒDn,0 Y
ÒDn,1, represents the relation Rn.1 This can be seen by

showing inductively over k that Dk,b represents the relation σAk“bpRkq. Below are
the parse graph of the above d-representation, and the parse tree of its equivalent
f-representation, for the case n “ 2:

Y

ˆ ˆ

xA1 : 1y xA2 : 0y Y xA2 : 1y

xA1 : 0y

Y

ˆ ˆ

xA1 : 1y xA2 : 0y Y xA2 : 1y

xA1 : 0y xA1 : 1y

Definition 2.4. The size |D| of a d-representation D is the total number of its
singletons, empty set symbols, unions, products, and occurrences of references.
The number of singletons in D is denoted by }D}.

Even though any relation has a flat f-representation, nested f-representations
can be exponentially smaller than their equivalent flat f-representations, where
the exponent is the size of the schema.

Example 2.5. The f-representation pxA1 : 0yYxA1 : 1yqˆ...ˆpxAn : 0yYxAn : 1yq

has 2n singletons, while any equivalent flat f-representation has n ˚ 2n singletons.

By caching common subexpressions, d-representations can be exponentially
smaller than their equivalent f-representations.

Example 2.6. The d-representation from Example 2.3 has size Opnq, while the
size of its equivalent f-representation is exponential in n since only the singleton
xA1 : 1y occurs Fn times (where Fn is the nth Fibonacci number).

2.1.2 Factorised Joins Over Multi-Relational Databases

So far we have seen how to represent relational data more efficiently using fac-
torised representations. The same idea can be extended to Join Queries over
Multi-Relational Databases.

Definition 2.7. The size |Q| of a join query Q is the number n of its relation
symbols.

1In Definition 2.1 the expressions Di are indexed by natural numbers i P 1, n, but any
partial order with a least element is sufficient because it can be re-indexed by consecutive
natural numbers that satisfy the two restrictions.

CHAPTER 2. PRELIMINARIES 9

Definition 2.8. Given a join query Q, two variables A and B are conditionally
independent given a set of variables S if, for any database D, A’s assignments do
not constrain B’s assignments given assignments for S in D; otherwise, A and B
are dependent.

Example 2.9. In the join query R1pA,Bq ’ R2pA,Cq, the variables B and C

are independent given variable A, whereas A and B are dependent on each other
as imposed by relation R1.

Definition 2.10. Given a join queryQ, a variable order ∆ forQ is a pair pT, keyq,
where:

• T is a rooted tree with one node per variable in Q such that the variables
of each relation symbol in Q lie along the same root-to-leaf path in T ,

• The function key maps each variable A to the subset of its ancestor variables
in T on which the variables in the subtree rooted at A depend, i.e., for every
variable B that is a child of a variable A, keypBq Ď keypAq Y tAu.

Variable orders define the nesting structure of the factorised join queries, they
guide the grounding process that computes the factorised representation of a join
query, and they define the asymptotic size bounds for factorised queries and the
time complexity to compute them.

The conditional independence of variables is modelled in a variable order by
branching: two variables A and B on different branches in a variable order ∆ are
conditionally independent given their common ancestors. The first constraint in
Definition 2.10 states that all variables of a relation symbol are dependent and,
therefore, they cannot lie on different root-to-leaf paths in ∆, since that would
mean they are independent.

Example 2.11. Taken from [24]. Figure 2.1(a) depicts three relations and their
natural join. The join result exhibits a high degree of redundancy. The value l1
occurs in 12 tuples, each value c1 and c2 occurs in six tuples and they are paired
with the same tuples of values for the other attributes.

Since l1 is paired in Competition with c1 and c2, and in Branch with p1 and
p2, the Cartesian product of tc1, c2u and tp1, p2u occurs in the join result. We can
represent this product symbolically as tc1, c2u ˆ tp1, p2u, instead of materialising
it. If we systematically apply this observation, we obtain an equivalent factorised
representation (Figure 2.1(d)) of the entire join result that is much more compact
than its flat representation.

CHAPTER 2. PRELIMINARIES 10

Figure 2.1: Taken from [24]. (a) Database with relations Branch(Location,
Product, Inventory), Competition(Location, Competitor), Sales(Product, Sale),
where the attribute names are abbreviated; (b) Hypergraph of the natural join
of the relations; (c) Variable order ∆ defining one possible nesting structure of
the factorised join result given in (d). The union s3Y s4 is cached under the first
occurrence of p2 and referenced (via a dotted edge) from the second occurrence
of p2.

Definition 2.12. The d-trees are the variable orders from Definition 2.10 and
represent the nesting structures of the d-representations of join query results.

Remark. In case keypAq is not the set of all ancestors of variable A in a d-tree
∆, then in a d-representation over ∆, the same factorisation fragments rooted at
A-values may be repeated for every tuple of values for ancestors not in keypAq.
Here is where the referencing is used: we store this fragment only once and we
refer to it instead of repeatedly copying it.

Definition 2.13. The f-trees are the d-trees where keypAq is the set of all an-
cestors of A, for all variables A. The f-trees are the nesting structures of f-
representations.

2.1.3 Size Bounds of Factorised Joins

Given a join query Q, there may be several variable orders for Q and they define
factorised representations of the result query of different sizes.

Definition 2.14. For a join query Q, we define HpQq “ pV,Eq as the hypergraph
that has one node in V per query variable in Q, and one hyperedge in E per
relation in Q. Figure 2.1(b) depicts the hypergraph of the natural join of the
three relations from Figure 2.1.

CHAPTER 2. PRELIMINARIES 11

Definition 2.15. An edge cover of HpQq is a subset of edges of HpQq such that
each node appears in at least one edge. The minimum edge cover problem is the
problem of finding an edge cover of minimum size.

The edge cover problem can be formulated as an integer programming problem
by assigning to each edge Ri a variable xRi

that can be 1 if Ri is part of the cover,
and 0 otherwise.

The Cartesian product of the relations in an edge cover includes the query
result, so for any database D we have:

|QpDq| ď |R1|
xR1 ˆ ...ˆ |Rn|

xRn ď N
řn

i“1 xRi (2.1)

By minimising the size of the edge cover, we can obtain a more accurate upper
bound for the size of the query result. This bound becomes tight for fractional
solutions [1].

Definition 2.16 ([1]). Given a join query Q over a database D “ pR1, ..., Rnq,
the fractional edge cover number ρ˚pQq is the cost of an optimal solution to the
linear program with variables txRi

uni“1:

minimise
n

ÿ

i“1

xRi

subject to
ÿ

RiPrelpAq

xRi
ě 1 for each query variable A

xRi
ě 0 for each 1 ď i ď n

(2.2)

Theorem 2.17 ([26]). For an f-representation over an f-tree ∆ of a join query
Q, the number sA of values of a variable A is bounded by the fractional edge cover
number of the join query that is a (keypAq Y A)-restriction of Q.

Corollary 2.18. An upper bound on the size of the f-representation over ∆ is
then the maximum over all variables in ∆ of the number of values of A:

sp∆q “ maxtρ˚pQkeypAqYtAuq | A is a variable in ∆u (2.3)

Corollary 2.19. The f-tree width spQq and d-tree width sÒpQq are then the min-
imum of the previous upper bound over all f-trees and d-trees, respectively:

spQq “ mintsp∆q | ∆ is an f-tree of Qu

sÒpQq “ mintsp∆q | ∆ is a d-tree of Qu
(2.4)

CHAPTER 2. PRELIMINARIES 12

Theorem 2.20 ([26]). The d-tree width sÒpQq is equal to the fractional hypertree
width of the join query fhtwpQq.

We know that 1 ď sÒpQq ď spQq ď ρ˚pQq ď |Q|. The gap between spQq

and ρ˚pQq can be as large as |Q| (e.g., for hierarchical queries), whereas the gap
between sÒpQq and spQq can be as large as log|Q| (e.g., for path queries). Clique
queries (e.g., triangles) are the pathological cases for which factorisation bring no
asymptotic saving.

Proposition 2.21 ([26, 1]). Given a join query Q, for any database D, the join
query result QpDq admits

• a flat representation of size Op|D|ρ˚pQqq,

• an f-representation over f-trees of size Op|D|spQqq,

• a d-representation over d-trees of size Op|D|fhtwpQqq.

There are classes of databases for which the size bounds in Proposition 2.21
are asymptotically tight. Furthermore, there are algorithms that compute the
join query result of the three representations in worst-case optimal time (i.e., the
computation time is the same as the size bound modulo log factors in the size of
the input relations) [26].

CHAPTER 2. PRELIMINARIES 13

2.2 Sum-Product Networks

Sum-Product Networks (SPNs) were first introduced by Poon and Domingos [30].
In this section we will briefly explain them and present the results that will make
us understand better their contribution to this thesis.

SPNs are deep neural networks containing only summations and multiplica-
tions. While these restrictions limit their expressiveness, they allow us to at-
tribute clear semantics to each node in the network in the sense that sub-SPNs
rooted at each node compute a joint probability distribution over the variables
from their scope. In this sense, SPNs can also be seen as a tractable probabilis-
tic graphical model (PGM). In fact, SPNs are equivalent to Arithmetic circuits
(ACs) [6, 31], and they can be converted into equivalent traditional probabilistic
graphical models such as Bayesian networks (BNs) and Markov networks (MNs)
by treating sum nodes as hidden variables [35]. An important advantage of SPNs
over BNs and MNs is that marginal inference can be done without any approxi-
mation in linear time in the size of the network.

We use the following notation adapted from Peharz et al. [29] throughout the
thesis. Random variables (RVs) are denoted by X, Y, Z, etc. The set of values
(states) a RV X can take is valpXq, and its value is denoted by x P valpXq.
Sets of RVs are denoted by boldface letters, e.g., X “ tX1, ..., XNu. We define
the Cartesian product valpXq “

ŚN
i“1 valpXiq, and we use x for elements of

valpXq. For X P X we define xrXs to be the projection of x onto X. An element
x P valpXq represents a complete evidence (or complete state), assigning to each
RV in X a value.

Partial evidence about X is represented as a subset X Ď valpXq, which is
an element of the sigma-algebra AX induced by the RV X. More precisely, for
discrete RV X, we have that AX “ PpvalpXqq (i.e., the power-set of valpXq). For
continuous RV X, in this thesis we always have that valpXq “ R, thus AX is the
set of all subsets X Ď R that can be obtained by performing a countable union
of intervals from R. For sets of RVs X “ tX1, ..., XNu, we define the product sets
HX “ t

ŚN
i“1 Xi | Xi P AXi

u to represent partial evidence about X, and we use X
for elements of HX. For X P X and X P HX, we define X rXs “ txrXs | x P X u.

We use the following abbreviations. For example, for RVs X and Y with
valpXq “ N and valpY q “ R, a complete evidence can be X “ 1, Y “ 2.5,
while partial evidence can be X “ 1, Y P p1, 2q or X P t3, 4, 5u. Notice that in

CHAPTER 2. PRELIMINARIES 14

the second example the absence of Y is an abbreviation for the nonrestrictive
evidence Y P valpY q. We also abbreviate the evidence X “

ŚN
i“1 valpXiq with ˚.

2.2.1 Network Polynomials

Darwiche [6] introduced network polynomials (NPs) for Bayesian networks over
random variables X with finitely many states. Poon and Domingos [30] built
on this idea and generalised them to unnormalised distributions (i.e., any non-
negative function Φpxq). Let λX“x P R be the indicator variables (IVs) for each
random variable X and each state x P valpXq.

Definition 2.22. Let Φ be an unnormalised probability distribution over RVs X
with finitely many states, and let λ be their IVs. The network polynomial fΦ of
Φ is defined as:

fΦpλq “
ÿ

xPvalpXq

Φpxq ˆ
ź

XPX

λX“xrXs (2.5)

The NP represents the distribution Φ in the following sense. Restrict the IVs
to t0, 1u, and as functions of x P valpXq, where:

λX“xpxq “

$

&

%

1 if x “ xrXs

0 otherwise
(2.6)

Let λpxq be the corresponding vector-valued function, collecting all λX“xpxq.
When we input λpxq to fΦ for a complete evidence x P valpXq, all but one of the
terms of the sum evaluate to 0, leaving us with fΦpλpxqq “ Φpxq.

The unnormalised probability of partial evidence X is fΦpλpX qq, where:

λX“xpX q “

$

&

%

1 if x P X rXs

0 otherwise
(2.7)

The NP compactly describes marginalisation over arbitrary domains of the
RVs by simply setting the corresponding IVs to 1. In particular, when the evidence
is ˚ and thus λX“x “ 1 for all X and x, fΦpλp˚qq is the normalisation constant
of Φ.

A direct implementation of the NP is obviously not practical due to the ex-
ponentially many terms.

Example 2.23. The network polynomial fΦ of the unnormalised probability

CHAPTER 2. PRELIMINARIES 15

X Y Φ
0 0 0.2
0 1 0.5
1 0 0.3
1 1 0.7

(a)

Evidence E λX“0 λX“1 λY“0 λY“1

X “ 0, Y “ 1 1 0 0 1
X “ 1, Y “ 1 0 1 0 1

X “ 1 0 1 1 1
˚ 1 1 1 1

(b)

Figure 2.2: (a) Probability table for Φ; (b) Examples of evidence indicators.

distribution Φ over the Boolean RVs X and Y from Figure 2.2(a) is:

fΦpλX“0, λX“1, λY“0, λY“1q “

0.2λX“0λY“0 ` 0.5λX“0λY“1 ` 0.3λX“1λY“0 ` 0.7λX“1λY“1

Figure 2.2(b) depicts some examples of evidence and the corresponding values
of the indicator variables.

2.2.2 Finite State Sum-Product Networks

Poon and Domingos [30] initially defined SPNs over Boolean Random Variables
with a straightforward extension to finite multi-valued discrete RVs.

For some node n in an acyclic directed graph, we denote with chpnq the set
of children of n, and with descpnq the set of descendants of n.

Definition 2.24. LetX “ tX1, X2, ..., XNu be a set of finite multi-valued discrete
random variables, and let λ be their IVs. A Sum-Product Network (SPN) over
the variables in X is a rooted directed acyclic graph whose internal nodes are
sums and products, and whose leaves are the IVs. The edges linking each sum
node s to its children c P chpsq are labeled with non-negative weights ws,c.

Let X be an evidence. We define VnpX q to be the value computed in a bottom
up pass by a node n based on evidence X :

VnpX q “

$

’

’

’

&

’

’

’

%

λX“xpX q if n is the leaf node λX“x
ř

cPchpnqwn,c ˆ VcpX q if n is a sum node
ś

cPchpnq VcpX q if n is a product node

(2.8)

We denote the sum-product network S as a function of the IVs λ by Spλq.
We define the value of S based on evidence X to be SpλpX qq “ VrootpX q. We

CHAPTER 2. PRELIMINARIES 16

Ř

Ś Ś

Ř Ř Ř Ř

X X Y Y

0.3 0.7

0.2

0.8 0.6

0.4 0.5

0.5 0.1

0.9

Figure 2.3: SPN S over two Boolean RVs. We denote their IVs with X,X, Y ,
and Y , respectively.

abbreviate this value as Spxq for complete evidence x, and as SpX q for partial
evidence X .

Definition 2.25 (Scope). The scope of a node n, denoted by scpnq, is the set of
variables that appear in the sub-network rooted at n:

scpnq “

$

&

%

tXu if n is some leaf node λX“x
Ť

cPchpnq scpcq otherwise
(2.9)

The sub-network rooted at an arbitrary node n in the SPN S is itself an SPN,
which is over scpnq and which we denote by Sn.

Example 2.26. For the SPN S in Figure 2.3 we have that Spx, x̄, y, ȳq “ 0.3 ˆ

p0.2x` 0.8x̄q ˆ p0.5y ` 0.5ȳq ` 0.7ˆ p0.6x` 0.4x̄q ˆ p0.1y ` 0.9ȳq. As in Figure
2.2(b) from NPs, we also have here that if a complete state x is X “ 0, Y “ 1,
then Spxq “ Sp0, 1, 1, 0q “ 0.148. If the evidence X is X “ 1, then SpX q “
Sp1, 0, 1, 1q “ 0.48. And finally, Sp˚q “ Sp1, 1, 1, 1q “ 1.

The values Spxq for all x P valpXq define an unnormalised probability distri-
bution over X. The unnormalised probability of an arbitrary evidence X under
this distribution is ΦSpX q “

ř

xPX Spxq. The partition function (or normalisation
constant) of the distribution defined by Spxq is ZS “

ř

xPvalpXq Spxq. Therefore,
we can define the probability distribution of an SPN as:

Definition 2.27 (SPN distribution). Let S be an SPN over RVs X. The proba-
bility distribution represented by S is:

PSpxq “
Spxq

ZS
“

Spxq
ř

x1PvalpXq Spx
1q

(2.10)

CHAPTER 2. PRELIMINARIES 17

Inference in structurally unconstrained SPNs is in general intractable. There-
fore, Poon and Domingos [30] introduced the notion of validity, and two conditions
that ensure the validity of an SPN, completeness and consistency.

Definition 2.28 (Validity). An SPN S over X is valid if SpX q “ ΦSpX q for all
evidence X P HX. In other words, an SPN is valid if it always computes correctly
the probability of an evidence. In particular, if S is a valid SPN then Sp˚q “ ZS

(meaning that all RVs are marginalised).

Definition 2.29 (Completeness). A sum node s in SPN S is complete if scpcq “
scpc1q, @c, c1 P chpsq. The SPN S is complete if every sum node in S is complete.

Definition 2.30 (Consistency). A product node p in SPN S is consistent if for
all c, c1 P chppq with c ‰ c1 it holds that λX“x P descpcq ùñ @x1 ‰ x : λX“x1 R

descpc1q. The SPN S is consistent if every product node in S is consistent.

Theorem 2.31 ([30]). If an SPN S is both complete and consistent, then S is
also valid.

Note that completeness and consistency are sufficient but not necessary for
validity. However, they are necessary for the stronger property that every sub-
network Sn of S is valid [30].

When the SPN S is valid, it ensures that the value computed by S based
on some evidence X is exactly the unnormalised probability of that evidence.
Therefore, the probability of an assignment X “ x (i.e., complete evidence) can
be computed as:

P pX “ xq “ PSpxq “
Spxq

Sp˚q
(2.11)

The marginal probability of a partial evidence X can also be computed using
the equation 2.11. Furthermore, conditional probabilities can also be computed
by evaluating two partial evidences. Let A and B be two events, and let XA

and XB be the corresponding partial evidences. We define XA XXB to be the
piecewise intersection. Then:

P pA | Bq “
P pAXBq

P pBq
“
SpXA XXBq

SpXBq
(2.12)

Therefore, in a valid SPN, joint, marginal, and conditional probability queries
can all be answered by two bottom up evaluations of the network, and hence, exact
inference in valid SPNs takes linear time in the size of the network. Alternatively,
Bayesian and Markov networks may take exponential time in the size of the
network.

CHAPTER 2. PRELIMINARIES 18

2.2.3 Generalised Sum-Product Networks

So far, we have considered SPNs over finite states RVs using IVs. However,
SPNs can be generalised by replacing the IVs with probability distributions over
arbitrary large scopes [30, 29]. From now on we assume that each RV from X is
either continuous or discrete, where the latter can also have countably infinitely
many states.

Poon and Domingos [30] also proposed a more restrictive, and hence easier to
achieve, condition for the product nodes that implies consistency:

Definition 2.32 (Decomposability). A product node p in SPN S is decomposable
if, for all c, c1 P chppq with c ‰ c1, it holds that scpcq X scpc1q “ H. The SPN S is
decomposable if every product node in S is decomposable.

Definition 2.33 (Locally normalised). In valid SPNs, the normalisation con-
stant ZS “

ř

xPvalpXq Spxq can be computed efficiently by a single bottom up
evaluation of Sp˚q. We call SPNs with ZS “ 1 normalised SPNs, for which we
have PSpxq “ Spxq. When the weights are normalised for each sum node s (i.e.,
@s :

ř

cPchpsqws,c “ 1), the SPN is automatically normalised [29]. We call such
SPNs locally normalised SPNs.

Peharz et al. [29] showed that locally normalised SPNs are not a weaker class
of models than non-normalised SPNs (i.e., any distribution represented by an
SPN with some structure can be represented by a locally normalised SPN with
the same structure). Moreover, they also showed that the class of consistent
SPNs is not exponentially more compact than the class of decomposable SPNs.
They showed that any distribution that can be encoded by a consistent SPN
using polynomially many arithmetic operations in |X| can also be polynomially
encoded by a decomposable SPN.

Definition 2.34 (Generalised SPNs). We define generalised SPNs as in Defini-
tion 2.24, but now the leaves are distributions over the RVs from X. The scope
of a node becomes now:

scpnq “

$

&

%

Y if n is a distribution over RVs Y Ď X
Ť

cPchpnq scpcq otherwise
(2.13)

Ideally, we would want to have the same results with generalised SPNs as
with valid finite state SPNs. Therefore, we will require that all sum nodes are

CHAPTER 2. PRELIMINARIES 19

complete and all product nodes are decomposable. Clearly, each node represents
a probability distribution over its scope. Actually, we can interpret generalised
SPNs as hierarchical mixture models, since each sum node can be seen as a
mixture of the distributions encoded by its children, where the probability of
each child component is proportional to the weight of the edge between the sum
node and that child. Completeness ensures that each child is a distribution over
the same set of variables. Similarly, we can think of each product node as factoring
a distribution into a product of marginal distributions. Decomposability ensures
that the marginal distributions are independent.

Evaluation of PSpxq “ Spxq for complete state x clearly works in the same
way as for finite state SPNs. Marginalisation also works in a similar way. For
partial evidence X we need to compute:

SpX q “
ż

x1PX1

...

ż

xNPXN

Spx1, ..., xNqdxn...dx1 (2.14)

where integrals have to be replaced by sums for discrete RVs. The main observa-
tion is that we can pull the integrals from 2.14 over all sums and products down
to the input distributions. At sum nodes, we can interchange the integrals with
the sum due to completeness. At product nodes, we can interchange the integrals
with the product due to decomposability (i.e., since the factors are functions over
disjoint variable sets). Therefore, the value VnpX q becomes now:

VnpX q “

$

’

’

’

&

’

’

’

%

pnpX q if n is a distribution node
ř

cPchpnqwn,c ˆ VcpX q if n is a sum node
ś

cPchpnq VcpX q if n is a product node

(2.15)

where pnpX q is the result of marginalising the distribution at node n over the
corresponding scope scpnq with respect to the partial evidence X .

In particular, if node n is a univariate distribution over RV X, then:

pnpX q “

$

&

%

ř

xPX rXs pmfXpxq if X is a discrete RV
ş

xPX rXs pdfXpxqdx if X is a continuous RV
(2.16)

Therefore, given that marginalisation at input distributions can be computed
efficiently, complete and decomposable generalised SPNs can answer inference
queries in linear time in the size of the network, exactly as finite state SPNs do.

Chapter 3

Structured Sum-Product Networks

We have seen in the introduction that, most of the time, the training data that
Machine Learning Tools need to import is expected to lay in memory as one
big table. However, in many cases, this big table is not straight there, and it is
rather the output of a Feature Extraction Query over several much smaller tables.
Usually, a Relational Database Management Systems is used for evaluating the
query that computes and materialises the output table, which is then exported
to the ML library. Our goal is to avoid this separation and build a structure-
aware system that tries to benefit to the maximum from the knowledge that can
be inferred by exploiting the semantics and structure of the underlying multi-
relational databases. In particular, the conditional independence in the training
dataset, as conveyed by the join dependencies in the data, or equivalently, by the
joins in the feature extraction query.

The key observation that builds the foundation of this project is the similarity
between FDBs and SPNs. In both of them, the underlying algebraic structure is
a semiring (i.e., similar to a ring but without the requirements that each element
must have an additive inverse).

In FDBs, the addition is the set union
Ť

and the multiplication is the Carte-
sian product

Ś

. While in SPNs, the addition and multiplication are the ` and
ˆ operators from R.

Both FDBs and SPNs exploit the distributivity of multiplication over addi-
tion law to succinctly represent the relational data in one case, and the joint
probability distribution of several random variables in the other case.

20

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 21

3.1 Structure Learning

Similar to how variable orders define the nesting structure of the factorised join
queries, they are the guidelines for the nesting structure of SSPNs too.

Let ∆ be a variable order for the natural join query Q over the database
D “ pR1, ..., Rnq. The query Q represents the Feature Extraction Query that
constructs the training dataset. We restrict ourselves to variable orders ∆ that
satisfy the following:

• All inner nodes of ∆ must be joining nodes (i.e., they are part of more than
one relation),

• All leaves of ∆ must not be joining nodes (i.e., they are part of exactly one
relation). They represent univariate random variables, each variable having
a distribution type given by the user (i.e, human-added semantics). We call
these nodes distribution nodes.

We talk later about these restrictions and about the fact that they do not
constrain the expressiveness of SSPNs.

Definition 3.1. Given a variable order ∆, let Dp∆q be the leaves of ∆ (i.e., the
distribution nodes), let J p∆q be the inner nodes of ∆ (i.e., the joining nodes),
and let Vp∆q be the set of all nodes from variable order ∆.

Definition 3.2 (SSPN). A Structured Sum-Product Network (SSPN) over vari-
able order ∆ is a generalised SPN over the random variables of ∆.

The method we propose for learning SSPN’s nesting structure is summarised
in Algorithm 1 and illustrated in Figure 3.1. In particular, it is an alternating
structure between sum and product nodes, with univariate distributions as leaves,
that accurately and compactly models the training data. It contains a sum node
sA (or a distribution node dA, respectively) for each variable A P J p∆q (or
A P Dp∆q, respectively) and each distinct combination of values for the variables
in keypAq. It also contains a product node pA for each variable A P J p∆q and
each distinct combination of values for the variables in keypAq Y tAu.

BuildSSPN is a (depth-first) algorithm that, given a variable order ∆, com-
putes the SSPN nesting structure. It also computes some counts that are used
for computing the weights (discussed later). The relations R1, ..., Rn are assumed
sorted on their attributes following a depth-first pre-order traversal of ∆. The

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 22

Algorithm 1 Constructs the sub-SSPN rooted at A
1: function BuildSSPN(A, pstarti, endiqiP1,n, ancV als)
2: contextÐ πkeypAqpancV alsq
3: if cacheArcontexts is not NULL then
4: return cacheArcontexts
5: end if
6: if chpAq “ H then
7: let i P 1, n s.t. A P schemapRiq

8: dNodeÐ new DistributionNode(A, πApRirstarti, endisq)
9: countpdNodeq Ð endi ´ starti ` 1
10: if keypAq ‰ ancpAq then
11: cacheArcontexts Ð dNode
12: end if
13: return dNode
14: else
15: sNodeÐ new SumNode()
16: countpsNodeq “ 0
17: for a P

Ş

iP1,n,APschemapRiq
πApRirstarti, endisq do

18: for i P 1, n do
19: find new ranges Rirstart

1
i, end

1
is Ď Rirstarti, endis s.t.

20: πApRirstart
1
i, end

1
isq “ a

21: end for
22: pNodeÐ new ProductNode()
23: countppNodeq Ð 1
24: for i P 1, n s.t. A is the last attribute in Ri do
25: countppNodeq Ð countppNodeq ˆ pend1i ´ start

1
i ` 1q

26: end for
27: berNodeÐ new BernoulliNode(A, tau)
28: pNodeÑ addChildpberNodeq
29: for B P chpAq do
30: chNodeÐ BuildSPN(B, pstart1i, end1iqiP1,n, ancV alsYxA : ay)
31: pNodeÑ addChildpchNodeq
32: countppNodeq Ð countppNodeq ˆ countpchNodeq
33: end for
34: sNodeÑ addChildppNodeq
35: countpsNodeq Ð countpsNodeq ` countppNodeq
36: end for
37: if keypAq ‰ ancpAq then
38: cacheArcontexts Ð sNode
39: end if
40: return sNode
41: end if
42: end function

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 23

...

AkeypAq

B1keypB1q ... Bk keypBkq

...
Ř

sA

Ś

p
p1q
A

...
Ś

p
plq
A

a1 ... al...B1 Bk B1 Bk

Figure 3.1: Sketch of the current step of Algorithm 1. The left hand side
represents the part of the variable order used for the current step of the algorithm
(the triangles represent the subtrees rooted at B1, ..., Bk). The right hand side
represents the sub-SSPN constructed in the current step of the algorithm. The
triangles represent the sub-SSPNs that are the children of the product nodes (note
that they may be just references). The double circled nodes are the Bernoulli
nodes corresponding to each value a that A can map to.

algorithm takes as parameters the current node A P Vp∆q, an array of ranges
defined by start and end indices in each relation, and ancV als mapping that
keeps track of the current values each variable in ancpAq maps to. Initially, A is
the root of ∆, the ranges span the relations entirely, and ancV als is empty.

We first check whether the sub-SSPN we are about to compute has been
already computed. If so, we return a reference to it instead, where the key for
the cache is just the context of A (i.e., the current mapping of the variables
in keypAq). Caching is particularly useful when keypAq Ă ancpAq (i.e., strictly
contained), since this means that the sub-SSPNs over the variable order rooted
at A are repeated for every distinct combination of values for the variables in
ancpAqzkeypAq. This makes the nesting structure of SSPNs to be rooted directed
acyclic graphs instead of rooted trees, and has a huge impact on the size of the
resulting SSPN.

If A is a leaf node, then we construct a distribution node dA using the values
that A can map to in the current context (i.e., the current range for Ri) for
estimating its parameters (discussed later). Note that at line 7, there is exactly
one i such that A P schemapRiq due to the restrictions imposed on ∆.

If A is an inner node (i.e., joining variable), then we first create a sum node sA
corresponding to variable A and its current context. For each mapping a in the
intersection of possible A-values from the relations that contain attribute A we do
the following. We first compute the new ranges that are narrowed down to those
tuples with value a for attribute A. This can be done using a parallel iterators

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 24

style algorithm in time linear in the size of the smallest range (modulo number of
relations factor). Note that the narrowed ranges are mutually exclusive for each
value a that A can map to. We then create a product node pA corresponding
to the augmented context (i.e., the values each variable from keypAq maps to,
plus the fresh new mapping xA : ay) that becomes a child of the sum node sA
(line 34). For each child B of A, we recurse using the new ranges and by setting
the current value a of A in ancV als. The resulted sub-SSPN becomes a child of
the product node pA. At lines 27-28, we also add a Bernoulli node constructed
from the value a to the children of the product node pA. The purpose of this
additional distribution node is to allow us to condition on the joining variable A
when doing inference. The Bernoulli node simply returns 1 if a P X rAs, and 0
otherwise. This gives us the additional power of taking into consideration only a
subset of the sub-SSPNs when doing inference.

At the end, the distribution node dA, or the sum node sA, respectively, is
added to the cache if that is the case (i.e., keypAq ‰ ancpAq), and it is returned.

Lemma 3.3 (Scope). Let sc∆pAq be the set of RVs from the subtree rooted at
node A in ∆ (i.e., its leaves). Then, for any SSPN S, scpnq “ sc∆pAq for any
node n in S corresponding to the variable A P Vp∆q (i.e., sA, pA, or dA).

Proof. The proof is based on structure induction on ∆. By definition, scpdAq “
tAu for any distribution node dA corresponding to the leaf node A from ∆. By
the induction hypothesis, scppAq “

Ť

cPchppAq
scpcq “

Ť

BPchpAq sc∆pBq “ sc∆pAq

for any product node pA corresponding to value a of A from ∆. And finally,
scpsAq “

Ť

pAPchpsAq
scppAq “ sc∆pAq.

Theorem 3.4 (Completeness). Given a variable order ∆, any SSPN S over ∆

is a complete SPN over the RVs from Dp∆q.

Proof. This follows immediately from Lemma 3.3 since scppAq “ scpp1Aq “ sc∆pAq

for any children pA and p1A of any sum node sA corresponding to variable A P

J p∆q.

Theorem 3.5 (Decomposability). Given a variable order ∆, any SSPN S over
∆ is a decomposable SPN over the RVs from Dp∆q.

Proof. By Lemma 3.3, we have that scpciq “ sc∆pBiq, @ci P chppAq for any product
node pA corresponding to variable A P J p∆q. Since ∆ is a tree, we have that
sc∆pBiq X sc∆pBjq “ H, @Bi ‰ Bj, and thus finishing the proof.

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 25

Corollary 3.6 (Validity). By Theorems 3.4 and 3.5, we have that, given a vari-
able order ∆, any SSPN S over ∆ is a valid SPN over the RVs from Dp∆q.

Corollary 3.7 (Exact Inference). Hence, exact inference in S can be answered
in time linear in |S|.

The structure of SSPNs from Algorithm 1 resulted naturally from the condi-
tional independence and factorisation modelled by the variable order ∆. Given
the join query Q, two children B1 and B2 of A are conditionally independent
given keypAq Y tAu. This leads naturally to setting B1’s and B2’s corresponding
sum nodes as children of the product node corresponding to the value a of A in
the current context.

3.2 Weights Learning

Once the structure of an SPN is fixed, one needs to estimate the weights la-
belling each outgoing edge of a sum node. The most popular parameter learning
algorithms that have been proposed are Gradient Descent (GD) [9, 30] and Ex-
pectation Maximisation (EM) [9, 29, 30].

3.2.1 Overview of Existing Methods

More precisely, given a valid SPN S overX and a training data setD “ tx1, ..,xLu,
the objective is to maximise the log-likelihood:

maximise logL “
L

ÿ

l“1

logSpxlq

subject to
ÿ

cPchpsq

ws,c “ 1, for all sum nodes s

ws,c ě 0, for all sum nodes s and c P chpsq

(3.1)

We assume without loss of generality that the sum and product nodes from
S are arranged in alternating layers. The partial derivatives can be computed
using backpropagation by first evaluating Snpxq in an upward pass, and then the
derivatives in a downward pass as following:

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 26

BS

BSn
pxq “

$

&

%

ř

pPpapnq
BS
BSp
pxq

ś

kPch´nppq
Skpxq if n is a sum node

ř

pPpapnqwp,n ˆ
BS
BSp
pxq if n is a product node

BS

wn,c
pxq “

BS

BSn
pxq ˆ Scpxq

(3.2)

where ch´nppq are the children of parent p of n, excluding n itself. Using the above
partial derivatives, one can also compute the marginals of all nodes (including
the hidden variables corresponding to the sum nodes) [6].

Hence, the derivative of the log-likelihood from 3.1 is:

B logL
Bwn,c

“

L
ÿ

i“1

B logS

wn,c
pxlq “

L
ÿ

l“1

1

Spxlq
ˆ
BS

BSn
pxlq ˆ Scpx

l
q (3.3)

giving us the following steepest ascent update (where η is the step size):

wÐ projectpw ` η∇ logLq (3.4)

where project means the projection of the new weights into the feasible region (i.e.,
positive and locally normalised weights). Alternatively, one can let unconstrained
ZS “ Sp˚q and optimise PSpxq “ Spxq

Sp˚q
instead, but keep in mind that projection

onto the positive axes is still necessary.
SPN weights can also be learned using Expectation Maximisation (EM) [7] by

considering each sum node as the marginalisation of a hidden variable in a mixture
model. The E step computes the marginals of the hidden variables corresponding
to the sum nodes, and the M step updates the weights by adding each marginal
value to its corresponding sum from the previous iterations and renormalising to
obtain the new weights.

However, both methods suffer from the gradient diffusion problem, especially
when learning deep networks. The gradient signal or the EM updates, respec-
tively, may rapidly vanish as more layers are added to the network.

Therefore, Poon and Domingos [30] proposed to overcome this problem by
using hard EM, i.e., by replacing marginal inference with Most Probable Expla-
nation inference. MPE can be found by replacing the sum nodes with max nodes.
We first do a bottom-up evaluation of the network, and then we start from the
root and follow all children of the product nodes, and the (or a) child with the
highest weighted value for the max nodes. Hard EM keeps track of the number

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 27

of times each weight edge was part of such an MPE path. The final weights are
obtained by normalising the counts (i.e., ws,c “ counts,c{

ř

c1Pchpsq counts,c1). This
avoids the gradient diffusion problem since all updates are of unit sizes.

3.2.2 Computing Weights for SSPNs

Our approach for learning the weights uses the same idea from hard EM, yet
in a completely different manner. Given a non-leaf node A from ∆, we can
efficiently compute the size of the join query result represented by the factorised
representation rooted at A. This query result represents the fraction of the data
used for learning the sub-SSPN rooted at the sum node s corresponding to node
A. This is further divided into smaller fractions of data that are used for learning
the sub-SSPNs corresponding to each product child p. This leads naturally to
the training data points that increment the count corresponding to the weight
ws,p in the hard EM method.

Therefore, the weights of SSPNs are defined as:

ws,p “
countppq

ř

cPchpsq countpcq
“
countppq

countpsq
, @ sum node s and p P chpsq (3.5)

where countpnq is the number of tuples in the join sub-query result from the
subtree rooted at the corresponding node A of n from ∆.

Algorithm 1 shows how to compute these counts. If A is a leaf node, then
the count of the corresponding distribution node is just the size of the range (line
9). When A is an inner node, the algorithm creates the sum node sNode, and a
product node pNode for each possible mapping a for A. The count of each pNode
is the product of the counts of its children (line 32). We also need to multiply
this with the range sizes of all relations Ri that "end" in node A (i.e., A is the
deepest attribute of Ri, lines 24-26). Finally, the count of sNode is just the sum
of the counts of its children (line 35).

Corollary 3.8 (Locally normalised). Since all weights of SSPN S are normalised,
we have that S is locally normalised, and thus, ZS “ 1, or more importantly,
PSpxq “ Spxq.

This has a significant impact in the efficiency of SSPNs since the time it takes
to answer an inference query is now half the initial time (i.e., inference queries
now require only one bottom-up evaluation of the network).

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 28

3.3 Distribution Parameters Learning

When Algorithm 1 inputs a leaf node A, it must create a distribution node that
accurately models the corresponding fraction of training data (i.e., the current
range forRi). The distribution type used for this leaf is given by the user, however,
its parameters need to be estimated. In order to estimate them accurately, we will
use the Maximum Likelihood Estimation (MLE) method. This method estimates
the probability distribution parameters by maximising a likelihood function, so
that the observed data is most probable. In many cases the likelihood function
is differentiable, and thus, the derivative test for determine the maxima can be
applied.

3.4 Relational SSPNs

As discussed in the Introduction, relational DBMSs bring a lot of advantages,
hence, our design decision aimed for a relational representation of our SSPNs in
order to take advantage of these benefits.

Each sum node sA or distribution node dA from SSPN S is uniquely identified
by the values each variable from keypAq maps to. Similarly, each product node
pA from S is uniquely identified by the values each variable from keypAq Y tAu

maps to. Building on this observation, we can represent S relationally by defining
the following three sets of relations:

• AdistrpkeyA, θ1, θ2, ..., θkq, for each distribution variable A P Dp∆q,

• AsumcntpkeyA, Ascq, for each variable A P Vp∆q,

• AcntpkeyA, A,Acq, for each variable A P Vp∆q.

where keyA denotes the sequence of variables from keypAq ordered increasingly by
their depth in ∆ (i.e., first parent and then child), where θ “ θ1, ..., θk denotes the
sequence of parameters of the distribution encoded by the variable A, and where
Asc and Ac denote the counts of the sum nodes and product nodes, respectively,
that these two sets of relations represent.

Given a variable A P Vp∆q, let K1, K2, ..., Km be the (possibly empty)
sequence keyA, and let B1, B2, ..., Bk be the (possibly empty) sequence of children
chpAq. If A is a leaf node, then let R be the unique relation such that A P

schemapRq, otherwise let R1, R2, ..., Rt be the (possibly empty) sequence of
relations that "end" in node A.

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 29

The three sets of tables can be computed using joins, group by’s, and simple
aggregates, following a reversed depth-first pre-order traversal of ∆. For each
variable A P Vp∆q following that order, we have that if A is a leaf node, then:

Algorithm 2 Computes the count table corresponding to leaf node A
1: CREATE TABLE A_cnt AS
2: SELECT K1, ..., Km, A, COUNT(*) AS A_c
3: FROM R
4: GROUP BY K1, ..., Km, A;

And if A is an inner node, then:

Algorithm 3 Computes the count table corresponding to inner node A
1: CREATE TABLE A_cnt AS
2: SELECT K1, ..., Km, A, SUM(B1_sc * ... * Bk_sc) AS A_c
3: FROM B1_sumcnt NATURAL JOIN ... NATURAL JOIN Bk_sumcnt
4: NATURAL JOIN R1 ... NATURAL JOIN Rt
5: GROUP BY K1, ..., Km, A;

The sum count table can be simply computed in both cases as:

Algorithm 4 Computes the sum count table corresponding to node A
1: CREATE TABLE A_sumcnt AS
2: SELECT K1, ..., Km, SUM(A_c) AS A_sc
3: FROM A_cnt
4: GROUP BY K1, ..., Km;

In case A is a leaf node, we also need to compute the distribution table. This
can be done using aggregates that match the formulas of the MLE parameters.

For example, if A encodes a Categorical distribution, then the probability of
each category is just its normalised frequency, thus:

Algorithm 5 Computes the Categorical distribution table corresponding to A
1: CREATE TABLE A_distr AS
2: SELECT K1, ..., Km, A, (A_c / A_sc) AS _freq
3: FROM A_cnt NATURAL JOIN A_sumcnt;

If A encodes a Gaussian distribution, then its MLE parameters are the mean
and standard deviation of the training data, thus:

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 30

Algorithm 6 Computes the Gaussian distribution table corresponding to A
1: CREATE TABLE A_distr AS
2: SELECT K1, ..., Km, AVG(A) AS _mean, VAR_POP(A) AS _var
3: FROM R
4: GROUP BY K1, ..., Km;

Inference queries can be computed in a similar manner using the three sets
of relations we have just created. Following the reversed depth-first pre-order
traversal of ∆, we compute a temporary relation AtmppkeyA, Apq for each variable
A P Vp∆q that keeps track of the intermediate probability value of the sub-SSPN
rooted at the corresponding sum node sA.

Given partial evidence X , we have that if A is a leaf node, then the value of
attribute Ap must equal pApX q (i.e., the result of marginalising the distribution
at node dA with respect to X). This can be accomplished using pre-defined aggre-
gate functions that compute the probability mass function (pmf) or cumulative
density function (cdf) of different probability distributions.

For example, if A encodes a Categorical distribution and X rAs “ ta, bu, then

Algorithm 7 Temporary table corresponding to Categorical RV A

1: WITH
2: ...
3: A_tmp AS (
4: SELECT K1, ..., Km, SUM(_freq) AS A_p
5: FROM A_distr
6: WHERE A IN (a, b)
7: GROUP BY K1, ..., Km
8:),
9: ...

If A encodes a Gaussian distribution and X rAs “ pa, bq, a ă b, then we use
gaussian_getCDF() pre-defined function to compute cdfpxq “ 1

2
r1` erfpx´µ

σ
?

2
qs:

Algorithm 8 Temporary table corresponding to Gaussian RV A

1: WITH
2: ...
3: A_tmp AS (
4: SELECT K1, ..., Km, gaussian_getCFD(_mean, _var, b) -

gaussian_getCDF(_mean, _var, a) AS A_pãÑ

5: FROM A_distr
6:),
7: ...

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 31

In the trivial case when variable A is not conditioned at all in partial evidence
X , the attribute Ap must be set to 1, and thus:

Algorithm 9 Temporary table corresponding to unconditioned RV A

1: WITH
2: ...
3: A_tmp AS (
4: SELECT [DISTINCT] K1, ..., Km, 1 AS A_p
5: FROM A_distr
6:),
7: ...

where the DISTINCT keyword must be used if A encodes a Categorical distri-
bution because there are several tuples that define a distribution node (i.e., one
per category) and we need only one tuple per distribution node in the resulting
temporary table.

If A is an inner node, the value of the sub-SSPN rooted at sum node sA is
then the weighted sum of the product children, where the value of each product
child is the product of the values of its sum children:

Algorithm 10 Temporary table corresponding to inner node A
1: WITH
2: ...
3: A_tmp AS (
4: SELECT K1, ..., Km,
5: SUM(B1_p * .. * Bk_p * (A_c / A_sc)) AS A_p
6: FROM A_cnt NATURAL JOIN A_sumcnt
7: NATURAL JOIN B1_tmp ... NATURAL JOIN Bk_tmp
8: [WHERE A IN (...)]
9: GROUP BY K1, ..., Km

10:),
11: ...

where the WHERE clause must be added if the joining variable A is con-
strained in the partial evidence X . In the end, the value of the inference query
is the value of the probability attribute corresponding to the root variable of ∆.

The same approach as the one described above can be used in order to compute
the SQL script that answers conditional probability or most probable explanation
(MPE) queries.

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 32

3.5 Maintaining SSPNs under Updates

As discussed in the introduction, SSPNs have the ability to be efficiently main-
tained under updates (tuple insertions and deletions) to the input database. We
have seen above that the construction of SSPNs S is divided into three com-
ponents. The network structure and its weights are represented relationally by
the count and sum count tables. The parameters of the probability distributions
found at the leaves of S are represented relationally by the distribution tables.
We see next how to efficiently maintain each of these three sets of tables under
tuple updates.

Suppose that one wants to insert or delete a tuple from relationRipA
p1q, ..., Aprqq

that is part of the join query Q. The attributes Ap1q, ..., Aprq are ordered increas-
ingly by their depth in ∆ (i.e., first parent and then child).

3.5.1 Network Structure and Weights Maintenance

Analysing the method SSPNs S are constructed, we can determine the minimal
changes required to maintain S up to date. More precisely, the only relations that
need to be updated are AsumcntpkeyA, Ascq and AcntpkeyA, A,Acq for all variables
A P Vp∆q that are ancestors of Aprq P schemapRiq (including Aprq). Moreover,
the only tuples from these relations that need to be updated are those that
agree on the common attributes from tAp1q, ..., Aprqu. Therefore, we can maintain
these relations by following the reversed depth-first pre-order traversal of ∆ and
updating the tuples that agree on Ap1q, ..., Aprq from the above relations.

If A is a leaf node, then updating AsumcntpkeyA, Ascq and AcntpkeyA, A,Acq

means incrementing (if one performs an insertion) or decrementing (if one per-
forms a deletion) the attributes Asc and Ac.

Otherwise, updating AsumcntpkeyA, Ascq and AcntpkeyA, A,Acq means recalcu-
lating the attributes Asc and Ac using the corresponding formulas described in
the previous section.

3.5.2 Distribution Parameters Maintenance

When Aprq is a leaf node, we also need to update the tuples from the distribution
table AprqdistrpkeyAprq , θ1, ..., θkq that agree on keypAprqq “ tAp1q, ..., Apr´1qu. Distri-
bution tables can be efficiently maintained under updates by keeping track of
intermediate sum and count aggregates from which the corresponding MLE pa-

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 33

rameter formulas can be evaluated. Many well known probability distributions
can be maintained in time O(1).

For example, the MLE parameters for Categorical distribution are the fre-
quency of each category. Instead of keeping track of the exact frequencies, we
can keep track of the count of each category and the total count. The frequency
is then the corresponding count divided by the total count, and an update con-
sists of just two incrementations or decrementations to the count corresponding
to Aprq and to the total count.

The MLE parameters for Gaussian distribution are the mean µ “ 1
n

řn
i“1 xi

and the standard deviation σ2 “ 1
n

řn
i“1pxi´µq

2 “ 1
n

řn
i“1px

2
i `µ

2´2xiµq. Thus,
by keeping track of n,

řn
i“1 xi, and

řn
i“1 x

2
i , one can compute µ and σ2 in O(1).

Moreover, these three values can be easily updated in O(1) when inserting or
deleting a new data point x.

Using the same approach, we can easily maintain the mean µ MLE parameter
for Poisson distribution and the rate λ “ n

řn
i“1 xi

MLE parameter for Exponential
distribution in O(1).

3.6 Discussion

At the beginning of the chapter we have imposed a couple of restrictions to the
variable orders ∆ used for SSPNs. The first restriction constrains the attributes
of the relations to lay down in their natural order on ∆ (i.e., the joining variables
before the distribution ones). As stated, this is natural and is not much of a
constraint. However, the second restriction allows only for relations with exactly
one distribution variable (which is the leaf of the corresponding path in ∆).
We overcome this restriction by decomposing the relations with more than one
distribution variables into multiple relations, each having exactly one distribution
variable. Basically, we make these distribution variables siblings hanging at the
bottom of the corresponding path from ∆. However, this decomposition yields
to wrong counts used for computing the weights. Therefore, we adjusted the
algorithm to take into consideration this decomposition, and thus, setting the
corresponding count to the actual number of distribution variable data points,
instead of raising this number to the power of the number of siblings, which is
what the initial algorithm would do.

Example 3.9. Figure 3.2 depicts the SSPN S constructed over the variable
order ∆ taken from Example 2.1 in the FDB preliminary chapter. The joining

CHAPTER 3. STRUCTURED SUM-PRODUCT NETWORKS 34

LH

CtLu

Categ.
P tLu

StP u

Gauss.
I tL, P u

Poiss.

Ř

sL

Ś

pl1
Ś

pl2

l1
Ř

s
p1q
P

d
p1q
C

tc1, c2u

d
p2q
C

tc3, c4u

Ř

s
p2q
P

l2

Ś

pp1
Ś

p
p1q
p2

Ś

p
p2q
p2

Ś

pp3

p1

d
p1q
S

ts1, s2u

d
p1q
I

ti1, i2u

p2

d
p2q
I

ti3u

d
p2q
S

ts3, s4u

d
p3q
I

ti4u

p2

d
p3q
S

ts5u

d
p4q
I

ti5u

p3

12
18

6
18

4
6

2
6

2
3

1
3

Figure 3.2: SSPN S (right hand side) constructed over the variable order ∆
(left hand side) from Figure 2.1.

variables are L and P , while the distribution ones are C, S, and I, each having its
distribution type. The structure of S follows the Algorithm 1, the double circled
nodes being the helping Bernoulli distribution nodes (each with their own value),
and the nodes with the bell shaped function inside the circle being the distribution
nodes corresponding to variables C, P , and I. Next to each distribution node, it
is depicted the set of values from which the corresponding MLE parameters are
computed. We have that countpdp1qS q “ countpd

p1q
I q “ 2, and thus, countppp1q “

2ˆ 2 “ 4. Similarly, countpdp2qI q “ 1 and countpdp2qS q “ 2, and thus, countppp1qp2 q “
1 ˆ 2 “ 2. By these two, we have that countpsp1qP q “ 4 ` 2 “ 6, and thus,
w
s
p1q
P ,pp1

“ 4
6
and w

s
p1q
P ,p

p1q
p2

“ 2
6
. The rest of the counts and weights are computed

in the same way. Also, in the variable order ∆ we have that keypSq “ tP u ‰

tL, P u “ ancpSq. Therefore, some sharing occurs and it can be seen in Figure
3.2 as the dotted red edge between pp2qp2 and dp2qS .

In the relational representation of S, the following tables are computed:

• IdistrpL, P,meanq, IcntpL, P, I, Icq, and IsumcntpL, P, Iscq,

• SdistrpL, P,mean, varq, ScntpL, P, S, Scq, and SsumcntpL, P, Sscq,

• PcntpL, P, Pcq and PsumcntpL, Pscq,

• CdistrpL,C, freqq, CcntpL,C,Ccq, and CsumcntpL,Cscq,

• LcntpL,Lcq and LsumcntpLscq.

Chapter 4

Scripting Language for SSPNs
Modelling

As mentioned in Introduction, apart from introducing the theory behind SSPNs
and implementing the system that builds the relational representation of them, we
have also created a user-friendly scripting language for modelling SSPNs. This is
basically another level of abstraction for our system which helps the user prepare
the training data, define the variable order ∆, define the inference queries, and
finally run the experiment much more easily.

The workflow is as follows. The system first parses the specification script
and then calls the corresponding back-end functions with the corresponding ar-
guments. These functions will generate several SQL files that define the relational
representation of SSPN S and the inference queries described in the specification.
Then, it connects to the DBMS engine and runs the corresponding SQL files. The
SQL code corresponding to inference queries is generated so that the results to-
gether with the values of the conditioned variables are inserted into a table. At
the end, the system also inserts the run time statistics into a table.

Figure 4.1 depicts the grammar used for the Scripting Language. Figure 4.2
depicts a specification script example for the SSPN S from Figure 3.2. Between
lines 8 and 24 small examples are shown for each of the data manipulation state-
ments our system supports.

A typical session in our system runs as follows. We start by providing the
schema of all tables (lines 1-5). We then do some data operations. We then set
each of the variables a distribution type, where joining variables must be of type
Bernoulli (lines 26-29). We then construct the variable order and the SPN (lines
31-36). We finally define the queries (lines 38-43).

35

CHAPTER 4. SCRIPTING LANGUAGE FOR SSPNS MODELLING 36

1: spec ::= "Schema:" schema "Definitions:" def* execute?
2:
3: schema ::= relation+
4: def ::= decompose | drop | join | cluster | project | pdf | var_order |

spn | bucket | inference | mpeãÑ

5:
6: decompose ::= relation {", " relation}+ "= decompose" rel_name
7: drop ::= rel_name "= drop" var "from" rel_names
8: join ::= relation "= join" rel_name ", " rel_name
9: cluster ::= rel_name "= cluster" rel_name "as" var "on" vars "using" num

"means"ãÑ

10: project ::= relation "= project" rel_name
11:
12: pdf ::= dist_type ":" vars;
13: var_order ::= vo_name "= construct variable order from" term "using

relations" rel_namesãÑ

14: term ::= var {"(" {term ","}+ ")"}?
15:
16: spn ::= spn_name "= construct spn with variable order" vo_name
17:
18: bucket ::= "bucket:" var "[" (set_value ",")+ "]"
19:
20: inference ::= query_name "= query" spn_name {"from" db_name "."

rel_name}? ": P(" events {"|" events}? ")"ãÑ

21: mpe ::= query_name "= query" spn_name {"from" db_name "." rel_name}? ":
MPE(" var {"|" events}? ")"ãÑ

22:
23: events ::= {{bin_condition | set_condition} ","}+
24: bin_condition ::= var {"<" | ">" | "="} value
25: set_condition ::= var {"in" | "between"} set_value
26: value ::= double | "'" string "'" | col_name
27: set_value ::= "[" {value ","}+ "]" | col_name
28:
29: execute ::= "execute" db_name {"out =" filename}? "statistics"?
30:
31: relation ::= rel_name vars
32: vars ::= "(" {var ","}+ ")"
33: dist_type ::= "bernoulli" | "categorical" | "gaussian" | "poisson" |

"exponential"ãÑ

34: rel_names ::= "(" {rel_name ","}+ ")"
35: rel_name, vo_name, spn_name, query_name, col_name, db_name, filename,

var ::= stringãÑ

36: num ::= int

Figure 4.1: The grammar for the Scripting Language.

CHAPTER 4. SCRIPTING LANGUAGE FOR SSPNS MODELLING 37

1: Schema:
2: Branch(L, P, I)
3: Competition(L, C)
4: Sales(P, S)
5: testset(I)
6:
7: Definitions:
8: /*
9: Rel. R(J1, J2, D1, D2) with multiple distr. vars. must be decomposed:

10: R1(J1, J2, D1), R2(J1, J2, D2) = decompose R
11:
12: We can drop a variable.
13: Relation R becomes the natural join of R1, R2, R3, with J dropped:
14: R = drop J from (R1, R2, R3)
15:
16: We can join two relations:
17: R(A, B, C) = join R1, R2
18:
19: We can use k-means to cluster some variables:
20: R_cl = cluster R as K on (A, B, C) using 5 means
21:
22: We can project away attributes from relation R(A, B, C):
23: R_p(A, B) = project R
24: */
25:
26: bernoulli: (L, P)
27: categorical: (C)
28: gaussian: (S)
29: poisson: (I)
30:
31: vo_ex = construct variable order from
32: L(C, P(S, I))
33: using relations
34: (Branch, Competition, Sales)
35:
36: spn_ex = construct spn with variable order vo_ex
37:
38: inference1 = query spn_ex: P(C in ['c1', 'c2'], S < 2)
39: inference2 = query spn_ex: P(C = 'c1' | S < 2, I between [2, 5])
40:
41: bucket: C [['c1'], ['c2'], ['c3'], ['c4']]
42: mpe_query1 = query spn_ex: MPE(C | I < 5)
43: mpe_query2 = query spn_ex from mydb.testset: MPE(C | I = I)
44:
45: execute mydb statistics

Figure 4.2: The specification script used for the example from Figure 3.2.

CHAPTER 4. SCRIPTING LANGUAGE FOR SSPNS MODELLING 38

We can define inference queries (with or without evidence - lines 38-39) or
MPE queries (lines 42-43). For an MPE query we also need to provide the value
buckets. The system issues a query per bucket and the one with the highest
probability is the answer of the MPE query. We can also use a database table to
issue multiple queries with the same definition (i.e., a query per tuple), provided
that the table’s columns match the variables we condition on (line 43). We can
also execute everything by just one command (line 45). The system automatically
creates a table per query definition (with the same name as the query name)
where the results will be inserted. It also creates a runtime statistics table where
it inserts the runtimes for each SPN construction and each query.

Our system connects to PostgreSQL and runs the queries that define SSPN S,
but due to the fact that all generated queries are written in the Standard Query
Language (SQL), our system can effectively run in any DBMS on any platform.

Chapter 5

Experiments

We have used the real MovieLens-100K [12] data set to test the accuracy of
SSPNs. The data set consists of 100,000 ratings on 1,682 movies by 943 users.
Each rating is an integer between 1 and 5. More details about the data set can
be seen in Figure 5.1.

5.1 Summary of Findings

The task is to predict unknown ratings given pairs of UserIDs and MovieIDs. We
evaluate the models in terms of accuracy (MAE and RMSE metrics) and runtime
performance (wall-clock time). We compare ourselves against the best known
models for the given task and also against SPFlow, a state-of-the-art system for
SPNs. Our experimental findings are summarised as follows:

• Our proposed SSPN system outperformed 8 out of 10 competitor models in
terms of the MAE accuracy metric, and 9 out of 10 models in terms of the
RMSE accuracy metric. Moreover, our system reported significantly better
accuracy results than the state-of-the-art SPFlow system for this data set.

• In terms of runtime performance for learning the model, SSPN system was
three orders of magnitude faster than the competitor SPFlow system, even
though the input database for SSPN system was much bigger due to the
incorporated similarity knowledge between users and movies.

• Even though the size of the SSPN network is two orders of magnitude
bigger than the size of the SPFlow learned network, the average runtimes
for answering one expected rating query are rather similar: SPFlow is just
1.095 times faster than our system.

39

CHAPTER 5. EXPERIMENTS 40

MovieLens-100K data set
No. of users 943
No. of movies 1682
No. of ratings 100000
No. of ratings per user 106.04
No. of ratings per movie 59.45
Rating Sparsity 93.7%

User Features Movie Features
UserID MovieID
Age Title
Gender Genres
Occupation

Figure 5.1: Description of MovieLens-100k data set. Rating Sparsity is the
portion of the missing entries from the full ratings matrix.

5.2 Evaluation Metric

We use the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) to evaluate the accuracy of the predicted ratings compared to the actual
ratings:

MAE “
1

|T |
ÿ

ru,mPT
|ru,m ´ r̂u,m|

RMSE “

d

1

|T |
ÿ

ru,mPT
pru,m ´ r̂u,mq2

(5.1)

where r̂u,m is the predicted rating of user u for movie m, and ru,m is the actual
rating from the testing set T , and where |T | is the size of T (i.e., the number
of UserID and MovieID pairs). Smaller values of MAE and RMSE means better
performance. Note that RMSE is more sensitive to large errors than MAE as it
computes the sum of square and not absolute values.

5.3 Competitor Algorithms

We compare SSPNs with the state-of-the-art discriminative models from the Sim-
ple Python Recommendation System Engine (Surprise) [14] website: the SVD
algorithm [19], an extension called SVD++, which takes into account implicit
ratings [17], NMF algorithm, which is a collaborative filtering algorithm based
on Non-negative Matrix Factorisation [21], Slope One algorithm [20], k-NN, Cen-
tered k-NN, and k-NN Baseline, which are several variants of the k-nearest neigh-
bours algorithm [18], Co-Clustering, which is a collaborative filtering algorithm
based on co-clustering [11], and Baseline, which is the baseline estimate computed

CHAPTER 5. EXPERIMENTS 41

Algorithm MAE RMSE
SVD 0.737 0.934
SVD++ 0.722 0.92
NMF 0.758 0.963
Slope One 0.743 0.946
k-NN 0.774 0.98
Centered k-NN 0.749 0.951
k-NN Baseline 0.733 0.931
Co-Clustering 0.753 0.963
Baseline 0.748 0.944
Random 1.215 1.514
SPFlow 0.9566 1.1435
SSPN (ours) 0.735 0.930

Figure 5.2: MAE and RMSE performance comparison of the algorithms from
the Surprise website [14].

from the mean and the biases of each user and movie [18].
We also compare the SSPN system with the state-of-the-art SPN model:

Mixed Sum-Product Networks (or MSPNs for short) [22] using their own Python
library called SPFlow [23].

5.4 Experimental Setup

We run all experiments on an Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 32GB
RAM, with Ubuntu 18.04.4 LTS computer. We use PostgreSQL 10.12 for SSPN
system and Python 3.6.9 for SPFlow system.

To evaluate the performance of the algorithms we used the 5-fold cross-
validation procedure. The ratings table was split into 5 random sets, each having
20,000 rating tuples, and 5 experiments were conducted, each having 80,000 rat-
ing tuples in the training data set and 20,000 rating tuples in the testing dataset.
We use the Root Mean Square Error (RMSE) from above for computing the error
bars (i.e., to measure the differences between different runs).

5.5 Experimental Results

Table 5.2 shows that Structured Sum-Product Networks have better performance
than all but two state-of-the-art discriminative models when using the MAE
accuracy metric, and that we have better performance than all but one competitor

CHAPTER 5. EXPERIMENTS 42

model when using the RMSE metric. More precisely, the MAE and RMSE values
of SSPNs on the MovieLens-100K data set are 0.735 ˘ 0.006 and 0.930 ˘ 0.007,
respectively.

This is an outstanding result taking into consideration that the competitor
algorithms are the state-of-the-art discriminative models that are specialised for
predictions in recommender systems. The only task these systems can solve is to
predict the rating given a pair of existing UserID and MovieID. In contrast, our
approach is much more general and can answer not only the most probable rating
given an existing pair of UserID and MovieID, but also other kind of inference or
conditional probability queries. After all, SSPNs model the entire join probability
distribution in the input data and treat all input variables as random variables,
and not only the rating label such as for discriminative models. In particular,
SSPNs can also predict ratings for new users or movies that don’t exist in the
data by conditioning on their features (i.e., age, gender, genres, etc.) rather than
on their (non-existent) IDs. Another query that is possible with SSPNs, but not
with the above models, is, for example, computing the age distribution for users
who give ratings above 3 to science fiction movies.

5.6 Model Accuracy

To obtain the results above, we built an ensemble of two SSPNs S1 and S2 over the
variable orders ∆1 and ∆2, respectively. We also added knowledge by computing
some similarity metrics between users and movies as additional two relations
that were used as input for SSPN learning together with the original relations.
SSPN S1 integrates the similarities between users, while SSPN S2 integrates the
similarities between movies. The weight of S1 is 1 ´ λ, while the weight of S2 is
λ, where the parameter 0 ď λ ď 1 needs to be learned from the training data set.
The prediction is then the weighted sum of the predictions of the two SSPNs,
rounded to the first natural number if required. Basically, our SSPNs ensemble
is a linear regression model, where the features are computed using non-linear
models (in this case SSPNs). In both ∆1 and ∆2, we set leaf age to be Gaussian,
and the others to be Categorical. More details about the variable orders ∆1 and
∆2 can be seen in Figure 5.3.

We tried several similarity measures for our model, such as the Cosine similar-
ity (Equation 5.2) and the Mean Square Difference (MSD) similarity (Equation
5.4). However, both of them give poor results on the MovieLens-100K data set

CHAPTER 5. EXPERIMENTS 43

uIDH

age gender uIDsim occ

mIDtuIDsimu

rating
tuIDsim,mIDu

genre
{mID}

mID H

genre mIDsim

uID tmIDsimu

rating
tmIDsim, uIDu

age
{uID}

gender
{uID}

occ
{uID}

Figure 5.3: The variable orders ∆1 (left) and ∆2 (right) over which SSPNs S1

and S2 were constructed. All variables from the second layer have the root as
their key in both ∆1 and ∆2.

in terms of both MAE and RMSE.

cosine_simpu1, u2q “

ř

mPMu1,u2
ru1,m ˆ ru2,m

b

ř

mPMu1,u2
r2
u1,m

ˆ

b

ř

mPMu1,u2
r2
u2,m

cosine_simpm1,m2q “

ř

uPUm1,m2
ru,m1 ˆ ru,m2

b

ř

uPUm1,m2
r2
u,m1

ˆ

b

ř

uPUm1,m2
r2
u,m2

(5.2)

msdpu1, u2q “
1

|Mu1,u2 |

ÿ

mPMu1,u2

pru1,m ´ ru2,mq
2

msdpm1,m2q “
1

|Um1,m2 |

ÿ

uPUm1,m2

pru,m1 ´ ru,m2q
2

(5.3)

with the MSD similarity defined as:

msd_simpu1, u2q “
1

msdpu1, u2q ` 1

msd_simpm1,m2q “
1

msdpm1,m2q ` 1

(5.4)

where Mu1,u2 is the set of movies both u1 and u2 have rated in the training
data set, and Um1,m2 is the set of users that have rated both m1 and m2 in the
training data set.

We noticed that, when using the above similarity measures, our model tends
to predict the average ratings for the users and the movies, respectively.

Therefore, we proposed a third similarity metric (Equation 5.5) that tries to

CHAPTER 5. EXPERIMENTS 44

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

α

M
A
E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

α

R
M
SE

Figure 5.4: MAE and RMSE performance when we vary the parameter α and
the optimal value λ “ 0.6 is set.

offer much more weight to those users u2 (or movies m2, respectively) that are
more similar to u1 (or m1, respectively):

users_simpu1, u2q “

$

&

%

Eqpu1, u2q if Eqpu1, u2q ą α ˆDiffpu1, u2q

0 otherwise
(5.5)

where Eqpu1, u2q and Diffpu1, u2q are the number of movies users u1 and u2

have rated the same and different, respectively:

Eqpu1, u2q “|tm PMu1,u2 : ru1,m “ ru2,mu|

Diffpu1, u2q “|tm PMu1,u2 : ru1,m ‰ ru2,mu|
(5.6)

with movies_simpm1,m2q defined analogous, and where the parameter α
needs to be learned from the training data set.

By varying both similarity parameter α and the ensemble weights parameter
λ, and by computing the average and root mean square error for the 5-fold cross

CHAPTER 5. EXPERIMENTS 45

´0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.72

0.73

0.74

0.75

0.76

0.77

0.78

λ

M
A
E

´0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

λ

R
M
SE

Figure 5.5: MAE and RMSE performance when optimal value α “ 0.5 is set
and we vary the parameter λ.

validation, we obtained that the best values for these parameters are α “ 0.5 and
λ “ 0.6 for both MAE and RMSE accuracy metrics. That is, for a pair pu1, u2q,
we take into account the number of movies u2 rated the same as u1 if and only if
this number is at least a third from the total number of movies u1 and u2 have
rated. And analogous for the movies. And we give a contribution of 0.4 to the
user similarity SSPN (i.e., S1), and a contribution of 0.6 to the movie similarity
SSPN (i.e., S2). Intuitively, it is correct to give slightly more contribution to
the movie similarity SSPN S2 as the task is to give ratings about movies and so
ratings given to similar movies are more important than the ratings given by the
similar users.

Figure 5.4 depicts the MAE and RMSE values when we vary the parameter
α and the optimal value λ “ 0.6 is set. Figure 5.5 depicts the MAE and RMSE
values when the optimal value α “ 0.5 is set and we vary the parameter λ.

CHAPTER 5. EXPERIMENTS 46

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

250

500

750

1,000

1,250

1,500

1,750

2,000

α

T
im

e
in

m
s

SSPN Construction
Inference Query

Figure 5.6: Time performance when varying the parameter α.

5.7 Runtime Performance

The choice of the similarity measure from Equation 5.5 has also an impact on the
run time performance. The pairs for which the similarity is 0 are not stored in
the tables, and thus, as the parameter α increases, more similarity pairs become
0, and so the sizes of the SSPNs decrease. Figure 5.6 shows the time performance
of our model when varying α. In particular, for the optimal model (i.e., α “ 0.5),
the accumulated SSPNs S1 and S2 construction times is 1479.51 millisecond, and
the average time spent on answering one query is 487.72 milliseconds. It is worth
mentioning that we didn’t use any indexes on the tables. This is likely to further
improve the runtime performance and is subject to future work.

5.8 Network Size

When the optimal value α “ 0.5 is set, the users similarity table has around
300,000 tuples, the movies similarity table has around 625,000 tuples, and the
ratings table has 80,000 tuples. Taking into account the 943 users and the 1,682
movies, together with their features, the total size of our model is 1.1 million
nodes broke down as:

• |S1| “ 383, 077 nodes with 3,568 sum nodes, 294,998 product nodes, and

CHAPTER 5. EXPERIMENTS 47

84,511 leaves, where S1 is the user similarity based SSPN,

• |S2| “ 717, 093 nodes with 4,307 sum nodes, 628,275 product nodes, and
84,511 leaves, where S2 is the movie similarity based SSPN.

The optimisation induced by variable orders by caching the sub-SSPNs rooted
at sum nodes sA whenever keypAq Ă ancpAq (i.e., strictly contained) is crucial
here. The variables mID, rating, and genre from ∆1, and the variables uID,
rating, age, gender, and occ from ∆2 have their key sets strictly contained in
their ancestor sets, and thus, all sub-SSPNs corresponding to these variables are
cached. If we didn’t cache and didn’t reuse these sub-SSPNs, the total size of our
model would have been around 350 million nodes.

5.9 SPN Competitor

We also trained and tested a state-of-the-art SPN model called Mixed Sum-
Product Networks [22]. We computed the full join of the user features, movie
features, and the ratings tables. We one-hot encoded the Occupation and Genres
tables. We trained the MSPN setting the UserID and MovieID as Discrete type,
the Rating and Age as Real type, and the Gender together with all Occupation
and Genres one-hot features as Binary type. Whereas for SSPN we consider an
ensemble of two models, SPFlow constructs their model solely based on the mate-
rialised natural join of the input tables (as expected by that system). By joining
with the similarities tables as well, the query result size would be around 140
million tuples, each with over 40 attributes. This is impractical for SPFlow, and
thus, incorporating similarities to their model is unfeasible.

Even though the training data set has 80,000 rows and over 40 features, the
size of the computed MSPN is rather small: 6,252 total nodes with 497 sum
nodes, 1,772 product nodes, and 3,983 leaves. The MAE and RMSE values of this
model are 0.956 and 1.143, respectively. Undoubtedly, our SSPNs significantly
outperformed the MSPN model on the MovieLens-100K data set in terms of both
MAE and RMSE, with our scores being just 0.735 and 0.930, respectively.

As stated in the Introduction chapter, existing SPN systems including SPFlow
report significant runtimes as they do not exploit the existing structure of the
underlying data expressed by the join relationships and set out to re-discover it
using expensive clustering and independence testing (time quadratic in the size of
the join result). In contrast, for acyclic queries like the MovieLens dataset, SSPNs

CHAPTER 5. EXPERIMENTS 48

are constructed in time linear in the input database size (including the additional
relations storing the similarities between users and movies). The runtime for
constructing the MSPN was 469 seconds, which is indeed much slower compered
to our SSPN construction time of just 1.48 seconds.

Even though the network sizes are of different magnitude order (i.e., 6,252
nodes compared to 1.1 million nodes), the average times of one inference query are
rather similar: 445.34 milliseconds (for MSPN) compared to 487.72 milliseconds
(for SSPN - ours). Hence, SSPN system has two orders of magnitude better
throughput than SPFlow, where the throughput measure is computed as inference
time per network size. This remarkable result validates our initial design decision
of implementing a fully relational system for modelling SSPNs.

Chapter 6

Conclusion

6.1 Summary

In this thesis, we introduced a new class of structure-aware relational Sum-
Product Network models learned over multi-relational databases called Struc-
tured Sum-Product Networks. We put forward a novel approach to computing
the structure and the parameters of these models by exploiting the semantics
and structure of the underlying multi-relational databases induced by the join
relationships and possible orders on the join variables. This was the key con-
jecture of the thesis that had a significant impact on the runtime performance
and accuracy of SSPNs. We introduced the relational representation of SSPNs,
and put forward algorithms that translate SSPN learning and inference to plain
SQL queries. We implemented a fully relational framework, together with a user-
friendly scripting language, that aid the development of SSPN models. We also
explained how SSPNs can efficiently be maintained under input data updates,
as, in contrast to the general approach, is possible with our models due to the
relational representation.

The experiments validated the reasons behind the decision to investigate
structure-aware learning and relational representation of SSPNs. Our proposed
model outperformed 8 out of 10 (when using the MAE metric) and 9 out of
10 (when using the RMSE metric) best known discriminative models for the
MovieLens-100K data set. Moreover, SSPNs reported significantly better accu-
racy results than the state-of-the-art SPFlow system in terms of both MAE and
RMSE metrics. Last but not least, our relational system for SSPNs was three
orders of magnitude faster than SPFlow library for model construction/learning
and had two orders of magnitude better throughput for inference queries.

49

CHAPTER 6. CONCLUSION 50

6.2 Future Work

Modelling and Experiments If I had more time, I would have liked to test
the accuracy and runtimes of SSPN models over other data sets. Furthermore, I
would have analysed how the runtime performance can be used to improve the
accuracy of the models by training SSPNs over larger amounts of relational data
or by training several models within the given time budget, and then choose the
one with highest accuracy. The scripting language has been designed specifically
to allow for easy modelling and deployment of SSPN models. In our search
for the SSPN used in the experiments, we tried with a range of simpler SSPNs
that considered different similarity measures, that created new join variables by
grouping on the various properties of users and movies. They all reported worse
accuracy and were not reported in the report for lack of space.

Optimisation of Inference If a set of conditional probability queries share
the same value for a variable from the evidence, further runtime optimisation
can be achieved by constructing a pruned SSPN where the above variable is
marginalised. Thus, because the set of queries are evaluated on a smaller SSPN,
the total runtime improves. This is akin to view materialisation in databases:
One precomputes a subquery that is common to many queries to speed up the
evaluation of all these queries. Most probably, I will implement this feature during
the summer.

Optimisation of Learning Another idea that I would have liked to investi-
gate, and which will most probable do so in the future, is to analyse how various
in-database optimisations can be applied to our SSPN system. For example, since
we know exactly how the tables that define the model are joined together, further
runtime optimisation may be achieved by using indexes and particular choices of
physical join implementations such as sort-merge joins as opposed to hash joins.

Implementation of Updates Another feature that will most probable be
added to the system in the near future is to implement the algorithms that main-
tain the SSPNs under input data updates (tuples insertions and deletions).

Further direction A more general direction for future work can also consist
of investigating and applying the structure-aware learning and in-database rep-
resentations approaches for other types of Machine Learning tasks.

Bibliography

[1] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for
relational joins. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 739–748. IEEE, 2008.

[2] N. Bakibayev, D. Olteanu, and J. Závodnỳ. Fdb: A query engine for fac-
torised relational databases. arXiv preprint arXiv:1203.2672, 2012.

[3] N. Bakibayev, T. Kočiskỳ, D. Olteanu, and J. Závodnỳ. Aggregation and
ordering in factorised databases. arXiv preprint arXiv:1307.0441, 2013.

[4] Y. Bengio et al. Learning deep architectures for ai. Foundations and trends®
in Machine Learning, 2(1):1–127, 2009.

[5] W.-C. Cheng, S. Kok, H. V. Pham, H. L. Chieu, and K. M. A. Chai. Lan-
guage modeling with sum-product networks. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

[6] A. Darwiche. A differential approach to inference in bayesian networks.
Journal of the ACM (JACM), 50(3):280–305, 2003.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society:
Series B (Methodological), 39(1):1–22, 1977.

[8] A. Dennis and D. Ventura. Learning the architecture of sum-product net-
works using clustering on variables. In Advances in Neural Information Pro-
cessing Systems, pages 2033–2041, 2012.

[9] R. Gens and P. Domingos. Discriminative learning of sum-product networks.
In Advances in Neural Information Processing Systems, pages 3239–3247,
2012.

51

BIBLIOGRAPHY 52

[10] R. Gens and D. Pedro. Learning the structure of sum-product networks. In
International conference on machine learning, pages 873–880, 2013.

[11] T. George and S. Merugu. A scalable collaborative filtering framework based
on co-clustering. In Fifth IEEE International Conference on Data Mining
(ICDM’05), pages 4–pp. IEEE, 2005.

[12] F. M. Harper and J. A. Konstan. The movielens datasets: History and
context. Acm transactions on interactive intelligent systems (tiis), 5(4):1–
19, 2015.

[13] J. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, et al. The madlib analytics library or
mad skills, the sql. arXiv preprint arXiv:1208.4165, 2012.

[14] N. Hug. Surprise, a Python library for recommender systems. http://

surpriselib.com, 2017.

[15] Kaggle. The State of Data Science and Machine Learning, 2017. URL
https://www.kaggle.com/surveys/2017.

[16] D. Koller and N. Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[17] Y. Koren. Factorization meets the neighborhood: a multifaceted collabora-
tive filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 426–434, 2008.

[18] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative fil-
tering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4
(1):1–24, 2010.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[20] D. Lemire and A. Maclachlan. Slope one predictors for online rating-based
collaborative filtering. In Proceedings of the 2005 SIAM International Con-
ference on Data Mining, pages 471–475. SIAM, 2005.

[21] X. Luo, M. Zhou, Y. Xia, and Q. Zhu. An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender sys-
tems. IEEE Transactions on Industrial Informatics, 10(2):1273–1284, 2014.

http://surpriselib.com
http://surpriselib.com
https://www.kaggle.com/surveys/2017

BIBLIOGRAPHY 53

[22] A. Molina, A. Vergari, N. Di Mauro, S. Natarajan, F. Esposito, and K. Ker-
sting. Mixed sum-product networks: A deep architecture for hybrid domains.
In Thirty-second AAAI conference on artificial intelligence, 2018.

[23] A. Molina, A. Vergari, K. Stelzner, R. Peharz, P. Subramani, N. D. Mauro,
P. Poupart, and K. Kersting. Spflow: An easy and extensible library for
deep probabilistic learning using sum-product networks, 2019.

[24] D. Olteanu and M. Schleich. Factorized databases. ACM SIGMOD Record,
45(2):5–16, 2016.

[25] D. Olteanu and J. Závodnỳ. Factorised representations of query results: size
bounds and readability. In Proceedings of the 15th International Conference
on Database Theory, pages 285–298, 2012.

[26] D. Olteanu and J. Závodnỳ. Size bounds for factorised representations of
query results. ACM Transactions on Database Systems (TODS), 40(1):1–44,
2015.

[27] R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy part-wise learning of
sum-product networks. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 612–627. Springer, 2013.

[28] R. Peharz, G. Kapeller, P. Mowlaee, and F. Pernkopf. Modeling speech
with sum-product networks: Application to bandwidth extension. In 2014
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3699–3703. IEEE, 2014.

[29] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos. On theoretical
properties of sum-product networks. In Artificial Intelligence and Statistics,
pages 744–752, 2015.

[30] H. Poon and P. Domingos. Sum-product networks: A new deep architec-
ture. In 2011 IEEE International Conference on Computer Vision Work-
shops (ICCV Workshops), pages 689–690. IEEE, 2011.

[31] A. Rooshenas and D. Lowd. Learning sum-product networks with direct
and indirect variable interactions. In International Conference on Machine
Learning, pages 710–718, 2014.

[32] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

BIBLIOGRAPHY 54

[33] M. Schleich, D. Olteanu, M. Abo-Khamis, H. Q. Ngo, and X. Nguyen. Learn-
ing models over relational data: A brief tutorial. In International Conference
on Scalable Uncertainty Management, pages 423–432. Springer, 2019.

[34] A. Vergari. Awesome Sum-Product Networks, October 2019. URL https:

//github.com/arranger1044/awesome-spn.

[35] H. Zhao, M. Melibari, and P. Poupart. On the relationship between sum-
product networks and bayesian networks. In International Conference on
Machine Learning, pages 116–124, 2015.

https://github.com/arranger1044/awesome-spn
https://github.com/arranger1044/awesome-spn

	Introduction
	Motivation
	Why SPNs?
	Why Relational Data?

	Contributions

	Preliminaries
	Factorised Databases
	Factorised Data Representations
	Factorised Joins Over Multi-Relational Databases
	Size Bounds of Factorised Joins

	Sum-Product Networks
	Network Polynomials
	Finite State Sum-Product Networks
	Generalised Sum-Product Networks

	Structured Sum-Product Networks
	Structure Learning
	Weights Learning
	Overview of Existing Methods
	Computing Weights for SSPNs

	Distribution Parameters Learning
	Relational SSPNs
	Maintaining SSPNs under Updates
	Network Structure and Weights Maintenance
	Distribution Parameters Maintenance

	Discussion

	Scripting Language for SSPNs Modelling
	Experiments
	Summary of Findings
	Evaluation Metric
	Competitor Algorithms
	Experimental Setup
	Experimental Results
	Model Accuracy
	Runtime Performance
	Network Size
	SPN Competitor

	Conclusion
	Summary
	Future Work

